English
新闻公告
More
化学进展 2015, Vol. 27 Issue (6): 633-640 DOI: 10.7536/PC141201 前一篇   后一篇

• 超分子化学专辑 •

导电自愈合材料的研究进展及应用

郭坤1, 张大丽2, 张晟*2, 李帮经*1   

  1. 1. 中国科学院成都生物研究所 成都 610041;
    2. 高分子材料工程国家重点实验室 四川大学高分子研究所 成都 610065
  • 收稿日期:2014-12-01 修回日期:2015-01-01 出版日期:2015-06-15 发布日期:2015-01-27
  • 通讯作者: 李帮经, 张晟 E-mail:libj@cib.ac.cn;zslbj@163.com
  • 基金资助:
    国家自然科学基金项目(No.51373174),中国科学院知识创新工程(No.KSCX2-EW-J-22)和中国科学院西部之光基金资助

Research Progress and Applications of Self-Healing Conductive Materials

Guo Kun1, Zhang Dali2, Zhang Sheng*2, Li Bangjing*1   

  1. 1. Chengdu Institute of Biology, Chinese Academy of Sciences, Chengdu 610041, China;
    2. State Key Laboratory of Polymer Materials Engineering, Polymer Research Institute of Sichuan University, Chengdu 610065, China
  • Received:2014-12-01 Revised:2015-01-01 Online:2015-06-15 Published:2015-01-27
  • Contact: 10.7536/PC141201 E-mail:libj@cib.ac.cn;zslbj@163.com
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51373174), the CAS Knowledge Innovation Program (No. KSCX2-EW-J-22), and the West Light Foundation of CAS.
高分子导电材料既具有金属的导电性又具有有机材料般的柔顺可加工性,在军事、能源、生物化学传感器等方面应用广泛。然而,其在制造使用过程中一旦发生破坏,就会造成电气元件的性能故障,甚至造成整个系统的瘫痪和报废。自愈合是人们模仿生物体损伤愈合的概念,解决材料损伤,延长材料使用寿命的新方法。本文综述了自愈合导电材料研究领域的最新动态,讨论了自愈合的机理和材料的制备方法,最后介绍了导电自愈合材料在超级电容器和电传感等方面的应用前景。我们相信导电自愈合材料的理论和应用研究会进一步推动电子器件领域的快速发展。
Conductive polymer materials have electronic properties like metal and flexibility and processability as organic materials. They have promise in military, energy and biosensor applications. However, damaged electronic component can ruin the circuit board and paralyze the entire electronic device. Such a problem can be solved by using self-healing conductive materials, which are capable of repairing the damage like biological system. In this paper, we review the research progress of self-healing conductive materials, discuss the mechanism and preparation of self-healing conductive materials, and finally introduce their applications, such as electronic sensor and supercapacitor. We believe that the research on the theories and applications of self-healing conductive materials can promote rapid development of electronic devices.

Contents
1 Introduction
2 The electrically self-healing materials
2.1 Self-healing materials with repairing agent
2.2 Self-healing materials without repairing agent
3 Applications of electrically self-healing materials
3.1 Electronic sensor skins
3.2 Supercapacitor
3.3 Lithium-ion batteries
4 Conclusion and outlook

中图分类号: 

()
[1] Patrick J F, Hart K R, Krull B P, Diesendruck C E, Moore J S, White S R. Adv. Mater., 2014, 26: 4302.
[2] Jin H, Mangun C L, Griffin A S, Moore J S, Sottos N R, White S R. Adv. Mater., 2014, 26: 282.
[3] Syrett J A, Becer C R, Haddleton D M. Polym. Chem., 2010, 1: 978.
[4] Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat. Commun., 2011, 2: 511.
[5] Chen Y, Kushner A M, Williams G A, Guan Z. Nat. Chem., 2012, 4: 467.
[6] White S R, Moore J S, Sottos N R, Krull B P, Santa Cruz W A, Gergely R C. Science, 2014, 344: 620.
[7] Cho S I, Lee S B. Acc. Chem. Res., 2008, 41: 699.
[8] Loget G, Zigah D, Bouffier L, Sojic N, Kuhn A. Acc. Chem. Res., 2013, 46: 2513.
[9] Guo X G, Facchetti A, Marks T J. Chem. Rev., 2014, 114: 8943.
[10] Krber H, Teipel U. Chem. Eng. Process., 2005, 44: 215.
[11] 王洪祚(Wang H Z), 王 颖(Wang Y). 粘结(Adhesion), 2014, 1: 71.
[12] Odom S A, Caruso M M, Finke A D, Prokup A M, Ritchey J A, Leonard J H. Adv. Funct. Mater., 2010, 20: 1721.
[13] Odom S A, Chayanupatkul S, Blaiszik B J, Zhao O, Jackson A C, Braun P V. Adv. Mater., 2012, 24: 2578.
[14] Blaiszik B J, Kramer S L, Grady M E, McIlroy D A, Moore J S, Sottos N R. Adv. Mater., 2012, 24: 398.
[15] Williams K A, Boydston A J, Bielawski C W. J. R. Soc. Interface, 2007, 4: 359.
[16] Zhang Y, Broekhuis A A, Picchioni F. Macromolecules, 2009, 42: 1906.
[17] Gong C, Liang J, Hu W, Niu X, Ma S, Hahn H T. Adv. Mater., 2013, 25: 4186.
[18] Montarnal D, Cordier P, Soulié-Ziakovic C, Tournilhac F, Leibler L. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 7925.
[19] Montarnal D, Tournilhac F, Hidalgo M, Couturier J L, Leibler L. J. Am. Chem. Soc., 2009, 131: 7966.
[20] 陈建华(Chen J H),齐士成(Qi S C),员荣平(Yuan R P),张孝阿(Zhang X A),江盛玲(Jiang S L),吕亚非(Lv Y F). 新型工业化(The Journal of New Industrialization), 2014, 1: 90.
[21] 闫付臻(Yan F Z), 赵洪明(Zhao H M), 叶 磊(Ye L), 朱乐敏(Zhu L M), 刘 欢(Liu H), 张子敬(Zhang Z J), 黄 萍(Huang P), 冉 蓉(Ran R). 高分子材料科学与工程(Polymer Materials Science and Engineering), 2014, 30: 30.
[22] Li Y, Chen S S, Wu M C, Sun J Q. Adv. Mater., 2012, 24: 4578.
[23] Li Y, Chen S S, Wu M C, Sun J Q. ACS Appl. Mater. Inter., 2014, 6: 16409.
[24] Tee B C, Wang C, Allen R, Bao Z. Nat. Nanotechnol., 2012, 7: 825.
[25] Wool R P. Soft Matter, 2008, 4: 400.
[26] Chortos A, Bao Z. Mater. Today, 2014, 17: 321.
[27] Park S, Kim H, Vosgueritchian M, Cheon S, Kim H, Koo J H. Adv. Mater., 2014, 26: 7324.
[28] Jeon J, Lee H B, Bao Z. Adv. Mater., 2013, 25: 850.
[29] Someya T, Sekitani T, Iba S, Kato Y, Kawaguchi H, Sakurai T. Proc. Natl. Acad. Sci. U. S. A., 2004, 101: 9966.
[30] Aravindan V, Gnanaraj J, Lee Y S, Madhavi S. Chem. Rev., 2014, 114: 11619.
[31] Winter M, Brodd R J. Chem. Rev., 2004, 104: 4245.
[32] Wang H, Zhu B, Jiang W, Yang Y, Leow W R, Wang H. Adv. Mater., 2014, 26: 3638.
[33] Wang C, Wu H, Chen Z, McDowell MT, Cui Y, Bao Z. Nat. Chem., 2013, 5: 1042.
[34] Sun H, You X, Jiang Y, Guan G, Fang X, Deng J, Peng H S. Angew. Chem. Int. Ed., 2014, 53: 9526.
[35] 郭丽梅(Guo L M),耿国伟(Geng G W),霍丙夏(Huo B X). 钻井液与完井液(Drilling Fluid & Completion Fluid), 2014, 31: 55.
[36] 董坤(Dong K), 魏钊(Wei Z), 杨志懋(Yang Z M), 陈咏梅(Chen Y M). 中国科学:化学(Scientia Sinica Chimica), 2012, 42: 741.
[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[4] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[5] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[6] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[7] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[8] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[9] 张天永, 吴畏, 朱剑, 李彬, 姜爽. 基于纳米碳填料可拉伸导电聚合物复合材料的制备[J]. 化学进展, 2021, 33(3): 417-425.
[10] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[11] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[12] 肖晶晶, 王牧, 张伟杰, 赵秀英, 冯岸超, 张立群. 铅卤钙钛矿-聚合物复合材料的制备及应用[J]. 化学进展, 2021, 33(10): 1731-1740.
[13] 张志, 邹晨涛, 杨水金. 基于钨(钼)酸铋半导体复合材料的合成及其在光催化降解中的应用[J]. 化学进展, 2020, 32(9): 1427-1436.
[14] 康美荣, 金福祥, 李臻, 宋河远, 陈静. 离子液体固载化及应用研究[J]. 化学进展, 2020, 32(9): 1274-1293.
[15] 贾航, 乔越, 张玉, 孟庆鑫, 刘程, 蹇锡高. 玄武岩纤维增强树脂基复合材料界面改性策略[J]. 化学进展, 2020, 32(9): 1307-1315.