English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 349-360 DOI: 10.7536/PC141114 前一篇   后一篇

• 综述与评价 •

可见光响应的银系光催化材料

周丽, 邓慧萍*, 张为   

  1. 同济大学环境科学与工程学院 上海 200092
  • 收稿日期:2014-11-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 邓慧萍 E-mail:denghuiping@sina.com
  • 基金资助:
    水专项课题“江苏省域城乡统筹供水技术集成与综合示范”(No.2014ZX07405002)资助

Research on Silver-Containing Visible-Light Photocatalysts

Zhou Li, Deng Huiping*, Zhang Wei   

  1. College of Environmental Science and Engineering, Tongji University, Shanghai 200092, China
  • Received:2014-11-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by Chinese Ministry of Construction Foundation for Major Special Projects of Water Pollution Control and Management of Science & Technology (No.2014ZX07405002).
银系可见光催化材料,包括含银非金属化合物、含银多金属氧化物及其他银系复合材料,在可见光辐射下具有良好的氧化还原能力,成为新型光催化材料的研究热点之一。本文综述了国内外银系氧化物光催化剂的研究动态和主要成果。氧化银是一种高活性和高选择性的窄带隙光催化剂,为增强其稳定性及反应活性,引入p区非金属及p区主族金属、d区过渡金属和s区碱/碱土金属,通过轨道杂化调整能带位置优化新型光催化材料的性能。本文详细介绍了氧化银、磷酸银、碳酸银、硅酸银及含银多金属氧化物的特性,同时,以银系氧化物作为基础形成的一系列复合材料也因形成异质结或者构成新的能带结构而提高了反应活性和稳定性。最后总结出改进可见光催化材料的几种可行方法,并对未来的研究趋势进行了展望。
Silver-containing visible-light photocatalysts including silver-containing non-metal compound, silver-containing multi-metal oxide and other silver-containing composites, have attracted more attention due to their high catalytic activities for oxidation and reduction ability under visible light irradiation. This paper summarizes the research achievements on silver-containing oxides photocatalysts. Silver oxide with a narrow energy gap is a kind of high efficient photocatalysts with photosensitive and unstable properties. In order to overcome the above problems, it is the efficient way to incorporate p/d/s-block non-metal and metal elements to improve photocatalystic activities by hybridizing orbitals. The properties of Ag2O, Ag3PO4, Ag2CO3, Ag6Si2O7 and silver-containing multi-metal oxides are introduced in detail. The photocatalystic activities and stability of some composites based on the silver-containing oxides are improved further through forming heterojunction structure and adjusting energy band structure. Finally, some feasible ways to design and improve the visible-light responding photocatalysts are concluded, and the development of silver-containing oxides semiconductor photocatalysts is also proposed.

Contents
1 Introduction
2 The application of silver in the synthesis of photocatalysts
3 Silver oxide and silver oxide based composite
4 Silver-containing non-metal compound/multi-metal oxides and photocatalytic mechanism
4.1 Silver-containing non-metal compound and composite
4.2 Silver-containing multi-metal oxides and composite
5 Other silver-containing composite photocatalysts
6 Conclusion

中图分类号: 

()
[1] Wang X, Li S, Yu H, Yu J, Liu S. Chem-Eur. J., 2011, 17: 7777.
[2] Long M, Cai W, Kisch H. Chem. Phys. Lett., 2008, 461: 102.
[3] Wang P, Huang B, Dai Y, Whangbo M H. Phys. Chem. Chem. Phys., 2012, 14: 9813.
[4] Wang Z, Liu Y, Huang B, Dai Y, Lou Z, Wang G, Zhang X, Qin X. Phys. Chem. Chem. Phys., 2014, 16: 2758.
[5] Lou Z, Wang Z, Huang B, Dai Y. ChemCatChem, 2014, 6: 2456.
[6] Tong H, Ouyang S, Bi Y, Umezawa N, Oshikiri M, Ye J. Adv. Mater., 2012, 24: 229.
[7] Kelly K L, Coronado E, Zhao L L, Schatz G C. J. Phys. Chem. B, 2003, 107: 668.
[8] El-Sayed M A. Accounts. Chem. Res., 2001, 34: 257.
[9] Brus L. Accounts. Chem. Res., 2008, 41: 1742.
[10] Burda C, Chen X B, Narayanan R, El-Sayed M A. Chem. Rev., 2005, 105: 1025.
[11] Subramanian V, Wolf E E, Kamat P V. J. Am. Chem. Soc., 2004, 126: 4943.
[12] Awazu K, Fujimaki M, Rockstuhl C, Tominaga J, Murakami H, Ohki Y, Yoshida N, Watanabe T. J. Am. Chem. Soc., 2008, 130: 1676.
[13] Kumar M K, Krishnamoorthy S, Tan L K, Chiam S Y, Tripathy S, Gao H. ACS Catal., 2011, 1: 300.
[14] Wang P, Huang B, Zhang Q, Zhang X, Qin X, Dai Y, Zhan J, Yu J, Liu H, Lou Z. Chem-Eur. J., 2010, 16: 10042.
[15] Wang P, Huang B, Zhang X, Qin X, Jin H, Dai Y, Wang Z, Wei J, Zhan J, Wang S, Wang J, Whangbo M H. Chem-Eur. J., 2009, 15: 1821.
[16] Wang P, Huang B, Qin X, Zhang X, Dai Y, Wei J, Whangbo M H. Angew. Chem. Int. Edit., 2008, 47: 7931.
[17] Wang P, Huang B, Lou Z, Zhang X, Qin X, Dai Y, Zheng Z, Wang X. Chem-Eur. J., 2010, 16: 538.
[18] Tang Y, Subramaniam V P, Lau T H, Lai Y, Gong D, Kanhere P D, Cheng Y H, Chen Z, Dong Z. Appl. Catal. B-Environ., 2011, 106: 577.
[19] Wang P, Huang B, Qin X, Zhang X, Dai Y, Whangbo M H. Inorg. Chem., 2009, 48: 10697.
[20] Cheng H, Huang B, Wang P, Wang Z, Lou Z, Wang J, Qin X, Zhang X, Dai Y. Chem. Commun., 2011, 47: 7054.
[21] Ye L, Liu J, Gong C, Tian L, Peng T, Zan L. ACS Catal., 2012, 2: 1677.
[22] Yu J, Dai G, Huang B. J. Phys. Chem. C, 2009, 113: 16394.
[23] Xu Y, Schoonen M A. Am. Mineral., 2000, 85: 543.
[24] Lyu L M, Huang M H. J. Phys. Chem. C, 2011, 115: 17768.
[25] Yao Z X, Yu P X, Feng Z Q, Xue X B, Bing J H, Ling L C, Huang G Q, Lei W J. Acta Phys. Chim. Sin., 2003, 19: 203.
[26] Murray B J, Li Q, Newberg J T, Menke E J, Hemminger J C, Penner R M. Nano Lett., 2005, 5: 2319.
[27] Zou J, Xu Y, Hou B, Wu D, Sun Y. Powder Technol., 2008, 183: 122.
[28] Wang X, Wu H F, Kuang Q, Huang R B, Xie Z X, Zheng L S. Langmuir, 2009, 26: 2774.
[29] Wang G, Ma X, Huang B, Cheng H, Wang Z, Zhan J, Qin X, Zhang X, Dai Y. J. Mater. Chem., 2012, 22: 21189.
[30] Kim M J, Cho Y S, Park S H, Huh Y D. Cryst. Growth Des., 2012, 12: 4180.
[31] López R, Gómez R. J. Sol-Gel. Sci. Technol., 2012, 61: 1.
[32] Lalitha K, Reddy J K, Sharma M V P, Kumari V D, Subrahmanyam M. Int. J. Hydrogen. Energ., 2010, 35: 3991.
[33] Priya R, Baiju K, Shukla S, Biju S, Reddy M, Patil K, Warrier K. Catal. Lett., 2009, 128: 137.
[34] Chen F, Liu Z, Liu Y, Fang P, Dai Y. Chem. Eng. J., 2013, 221: 283.
[35] Sarkar D, Ghosh C K, Mukherjee S, Chattopadhyay K K. ACS Appl. Mater. Interfaces, 2012, 5: 331.
[36] Zhou W, Liu H, Wang J, Liu D, Du G, Cui J. ACS Appl. Mater. Interfaces, 2010, 2: 2385.
[37] Zhou W, Liu H, Wang J, Liu D, Du G, Han S, Lin J, Wang R. Phys. Chem. Chem. Phys., 2010, 12: 15119.
[38] Hua H, Xi Y, Zhao Z, Xie X, Hu C, Liu H. Mater. Lett., 2013, 91: 81.
[39] Cui J. Mater. Charact., 2012, 64: 43.
[40] Li Y, Zhao X, Fan W. J. Phys. Chem. C, 2011, 115: 3552.
[41] Wu M, Yan J M, Zhao M, Jiang Q. ChemPlusChem, 2012, 77: 931.
[42] Lam S M, Sin J C, Abdullah A Z, Mohamed A R. Chem. Pap-Chem. Zvesti, 2013, 67: 1277.
[43] Lin T H, Chen T T, Cheng C L, Lin H Y, Chen Y F. Opt. Express, 2009, 17: 4342.
[44] Xu L, Wei B, Liu W, Zhang H, Su C, Che J. Nanoscale Res. Lett., 2013, 8: 1.
[45] Zhu L, Wei B, Xu L, Lü Z, Zhang H, Gao H, Che J. CrystEngComm, 2012, 14: 5705.
[46] Yu H, Liu R, Wang X, Wang P, Yu J. Appl. Catal. B-Environ., 2012, 111/112: 326.
[47] Wang X, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nat. Mater., 2009, 8: 76.
[48] Xu M, Han L, Dong S. ACS Appl. Mater. Interfaces, 2013, 5: 12533.
[49] Shi L, Liang L, Ma J, Wang F, Sun J. Catal. Sci. Tech., 2014, 4: 758.
[50] Ji Z, Shen X, Yang J, Xu Y, Zhu G, Chen K. Eur. J. Inorg. Chem., 2013, 2013: 6119.
[51] Ouyang S, Li Z, Ouyang Z, Yu T, Ye J, Zou Z. J. Phys. Chem. C, 2008, 112: 3134.
[52] Yi Z, Ye J, Kikugawa N, Kako T, Ouyang S, Stuart-Williams H, Yang H, Cao J, Luo W, Li Z. Nat. Mater., 2010, 9: 559.
[53] Huang G F, Ma Z L, Huang W Q, Tian Y, Jiao C, Yang Z M, Wan Z, Pan A. J. Nanomater., 2013, 2013: 1.
[54] Ma X, Lu B, Li D, Shi R, Pan C, Zhu Y. J. Phys. Chem. C, 2011, 115: 4680.
[55] Wang H, Bai Y, Yang J, Lang X, Li J, Guo L. Chem-Eur. J., 2012, 18: 5524.
[56] Gondal M A, Chang X, Sha W E, Yamani Z H, Zhou Q. J. Colloid Interf. Sci, 2013, 392: 325.
[57] Liu Y, Fang L, Lu H, Liu L, Wang H, Hu C. Catal. Commun., 2012, 17: 200.
[58] Liu Y, Fang L, Lu H, Li Y, Hu C, Yu H. Appl. Catal. B-Environ., 2012, 115: 245.
[59] Wang X, Utsumi M, Yang Y, Shimizu K, Li D, Zhang Z, Sugiura N. Chem. Eng. J., 2013, 230: 172.
[60] Dong P, Wang Y, Cao B, Xin S, Guo L, Zhang J, Li F. Appl. Catal. B-Environ., 2013, 132/133: 45.
[61] Cui H, Yang X, Gao Q, Liu H, Li Y, Tang H, Zhang R, Qin J, Yan X. Mater. Lett., 2013, 93: 28.
[62] Ao Y, Wang P, Wang C, Hou J, Qian J. Appl. Surf. Sci., 2013, 271: 265.
[63] Liang Q, Shi Y, Ma W, Li Z, Yang X. Phys. Chem. Chem. Phys., 2012, 14: 15657.
[64] Yang X, Cui H, Li Y, Qin J, Zhang R, Tang H. ACS Catal., 2013, 3: 363.
[65] Liu L, Liu J, Sun D D. Catal. Sci. Tech., 2012, 2: 2525.
[66] He G, Qian M, Sun X, Chen Q, Wang X, Chen H. Powder Technol., 2013, 246: 278.
[67] Zhu M, Chen P, Liu M. Chinese. Sci. Bull., 2013, 58: 84.
[68] Thomas A, Fischer A, Goettmann F, Antonietti M, Muller J O, Schlogl R, Carlsson J M. J. Mater. Chem., 2008, 18: 4893.
[69] Liao G, Chen S, Quan X, Yu H, Zhao H. J. Mater. Chem., 2012, 22: 2721.
[70] Zhang F J, Xie F Z, Zhu S F, Liu J, Zhang J, Mei S F, Zhao W. Chem. Eng. J., 2013, 228: 435.
[71] Kumar S, Surendar T, Baruah A, Shanker V. J. Mater. Chem., 2013, 1: 5333.
[72] Zhang H, Huang H, Ming H, Li H, Zhang L, Liu Y, Kang Z. J. Mater. Chem., 2012, 22: 10501.
[73] Lin H, Ye H, Xu B, Cao J, Chen S. Catal. Commun., 2013, 37: 55.
[74] Zhang L, Zhang H, Huang H, Liu Y, Kang Z. New J. Chem., 2012, 36: 1541.
[75] Liu W, Wang M, Xu C, Chen S, Fu X. Mater. Res. Bull., 2013, 48: 106.
[76] Yao W, Zhang B, Huang C, Ma C, Song X, Xu Q. J. Mater. Chem., 2012, 22: 4050.
[77] Xu Y S, Zhang W D. Dalton Trans., 2013, 42: 1094.
[78] Guo J, Ouyang S, Zhou H, Kako T, Ye J. J. Phys. Chem. C, 2013, 117: 17716.
[79] Li G, Mao L. RSC Adv., 2012, 2: 5108.
[80] Zhou Z Y, Tian N, Li J T, Broadwell I, Sun S G. Chem. Soc. Rev., 2011, 40: 4167.
[81] Zhou X, Lan J, Liu G, Deng K, Yang Y, Nie G, Yu J, Zhi L. Angew. Chem. Int. Edit., 2012, 51: 178.
[82] Zheng B, Wang X, Liu C, Tan K, Xie Z, Zheng L. J. Mater. Chem., 2013, 1: 12635.
[83] Dong H, Chen G, Sun J, Li C, Yu Y, Chen D. Appl. Catal. B-Environ., 2013, 134: 46.
[84] Xu C, Liu Y, Huang B, Li H, Qin X, Zhang X, Dai Y. Appl. Surf. Sci., 2011, 257: 8732.
[85] Dai G, Yu J, Liu G. J. Phys. Chem. C, 2012, 116: 15519.
[86] Dong C, Wu K L, Wei X W, Li X Z, Liu L, Ding T H, Wang J, Ye Y. CrystEngComm, 2014, 16: 730.
[87] Lou Z, Huang B, Wang Z, Ma X, Zhang R, Zhang X, Qin X, Dai Y, Whangbo M H. Chem. Mater., 2014, 26: 3873.
[88] Wang Z, Huang B, Dai Y, Wang P, Zheng Z, Cheng H. Z. Kristallogr., 2010, 225: 520.
[89] Yu H, Liu L, Wang X, Wang P, Yu J, Wang Y. Dalton Trans., 2012, 41: 10405.
[90] 朱明山(Zhu M S), 陈鹏磊(Chen P L), 刘鸣华(Liu M H). 化学进展 (Progress in Chemistry), 2013, 25: 209.
[91] Wang H, Lang X, Gao J, Liu W, Wu D, Wu Y, Guo L, Li J. Chem-Eur. J., 2012, 18: 4620.
[92] 娄在祝(Lou Z Z). 山东大学博士论文 (Doctoral Dissertation of Shangdong University), 2014.
[93] Wang Y, Sun L, Fugetsu B. J. Mater. Chem., 2013, 1: 12536.
[94] Zhu M, Chen P, Liu M. ACS Nano, 2011, 5: 4529.
[95] Xu H, Yan J, Xu Y, Song Y, Li H, Xia J, Huang C, Wan H. Appl. Catal. B-Environ., 2013, 129: 182.
[96] Arai N, Saito N, Nishiyama H, Domen K, Kobayashi H, Sato K, Inoue Y. Catal. Today, 2007, 129: 407.
[97] Ouyang S, Kikugawa N, Chen D, Zou Z, Ye J. J. Phys. Chem. C, 2009, 113: 1560.
[98] Sheets W C, Stampler E S, Bertoni M I, Sasaki M, Marks T J, Mason T O, Poeppelmeier K R. Inorg. Chem., 2008, 47: 2696.
[99] Ouyang S, Zhang H, Li D, Yu T, Ye J, Zou Z. J. Phys. Chem. B, 2006, 110: 11677.
[100] Ouyang S, Ye J. J. Am. Chem. Soc., 2011, 133: 7757.
[101] Dong H, Li Z, Xu X, Ding Z, Wu L, Wang X, Fu X. Appl. Catal. B-Environ., 2009, 89: 551.
[102] Maruyama Y, Irie H, Hashimoto K. J. Phys. Chem. B, 2006, 110: 23274.
[103] Ouyang S, Chen D, Wang D, Li Z, Ye J, Zou Z. Cryst. Growth Des., 2010, 10: 2921.
[104] Mizoguchi H, Woodward P M. Chem. Mater., 2004, 16: 5233.
[105] Kato H, Kobayashi H, Kudo A. J. Phys. Chem. B, 2002, 106: 12441.
[106] Liu W, Liu X, Fu Y, You Q, Huang R, Liu P, Li Z. Appl. Catal. B-Environ., 2012, 123: 78.
[107] Singh J, Uma S. J. Phys. Chem. C, 2009, 113: 12483.
[108] Kako T, Kikugawa N, Ye J. Catal. Today, 2008, 131: 197.
[109] Shi H, Li Z, Kou J, Ye J, Zou Z. J. Phys. Chem. C, 2010, 115: 145.
[110] Konta R, Kato H, Kobayashi H, Kudo A. Phys. Chem. Chem. Phys., 2003, 5: 3061.
[111] Liu Y, Yu H, Cai M, Sun J. Catal. Commun., 2012, 26: 63.
[112] Kim D W, Cho I S, Lee S, Bae S T, Shin S S, Han G S, Jung H S, Hong K S. J. Am. Ceram. Soc., 2010, 93: 3867.
[113] Zhang G, Gong J, Zou X, He F, Zhang Q, Liu Y, Yang X, Hu B. Chem. Eng. J., 2006, 123: 59.
[114] Li X, Ouyang S, Kikugawa N, Ye J. Appl. Catal. A-Gen., 2008, 334: 51.
[115] Zhang N, Ouyang S, Kako T, Ye J. Chem. Commun., 2012, 48: 9894.
[116] Tang J, Zou Z, Ye J. J. Phys. Chem. B, 2003, 107: 14265.
[117] Ramesha K, Prakash A, Sathiya M, Madras G, Shukla A. Mater. Sci. Eng., B, 2011, 176: 141.
[118] Bi Y, Ouyang S, Cao J, Ye J. Phys. Chem. Chem. Phys., 2011, 13: 10071.
[119] Dong H, Chen G, Sun J, Feng Y, Li C, Xiong G, Lv C. Dalton Trans., 2014, 43: 7282.
[120] Xu H, Zhu J, Song Y, Xu Y, Song Y, Haiyan J, Li H. RSC Adv., 2014, 4: 9139.
[121] Chen Z, Wang W, Zhang Z, Fang X. J. Phys. Chem. C, 2013, 117: 19346.
[122] Wang C, Yan J, Wu X, Song Y, Cai G, Xu H, Zhu J, Li H. Appl. Surf. Sci., 2013, 273: 159.
[123] Zhu Q, Wang W S, Lin L, Gao G Q, Guo H L, Du H, Xu A W. J. Phys. Chem. C, 2013, 117: 5894.
[124] Yu C, Li G, Kumar S, Yang K, Jin R. Adv. Mater., 2014, 26: 892.
[1] 尤运城, 曾甜, 刘劲松, 胡廷松, 台国安. 类石墨烯二硫化钨薄膜的化学气相沉积法制备及其应用[J]. 化学进展, 2015, 27(11): 1578-1590.
[2] 冯妍, 吴青松, 张国英*, 孙亚秋 . 可见光响应型Bi2WO6光催化剂[J]. 化学进展, 2012, 24(11): 2124-2131.
阅读次数
全文


摘要

可见光响应的银系光催化材料