English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 448-458 DOI: 10.7536/PC141113 前一篇   

所属专题: 酶化学

• 综述与评论 •

腈水解酶在医药中间体生物催化研究中的最新进展

龚劲松, 李恒, 陆震鸣, 史劲松, 许正宏*   

  1. 江南大学药学院 无锡 214122
  • 收稿日期:2014-11-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 许正宏 E-mail:zhenghxu@jiangnan.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 21406088, 21206055),江苏省自然科学基金项目(No. BK20140133)和“十二五”国家科技支撑计划课题(No. 2012AA022204C)资助

Recent Progress in the Application of Nitrilase in the Biocatalytic Synthesis of Pharmaceutical Intermediates

Gong Jinsong, Li Heng, Lu Zhenming, Shi Jinsong, Xu Zhenghong*   

  1. School of Pharmaceutical Science, Jiangnan University, Wuxi 214122, China
  • Received:2014-11-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 21406088, 21206055), the Natural Science Foundation of Jiangsu Province, China (No. BK20140133), and the National Key Technology R&D Program of China for the 12th Five-year Plan (No. 2012AA022204C).
腈水解酶是生物催化领域中的一种重要催化剂,可用于羧酸的生物合成,反应过程具有条件温和、催化效率高、选择性突出、工艺绿色环保等特点,在医药中间体的制备中具有重要应用,符合原子经济性和绿色化学的发展方向。相关酶种的挖掘及改造已逐步成为新的研究热点,许多腈水解酶催化剂已被开发应用于医药中间体的合成。随着现代分子生物学技术的进步以及生物催化进入第三次发展浪潮,利用基因工程手段构建的基因工程菌或纯化酶作为催化剂已变得较为普遍,提高催化剂的催化潜力、改善其催化特性以最大程度的体现腈水解酶合成反应的独特优势,将为腈水解酶应用于更多医药中间体的合成奠定基础。本文综述了用于医药中间体合成的腈水解酶的应用与发展现状,并探讨了该领域研究所面临的前所未有的机遇与挑战。
Nitrilase is a crucial enzyme in the field of biocatalysis, which can be used for biosynthesis of various carboxylic acids from corresponding nitriles. This approach is usually employed for preparing pharmaceutical intermediates because of its superior catalytic characteristics including mild reaction conditions, high conversion efficiency, prominent selectivity, and eco-friendly nature. Therefore, the nitrilase-mediated biocatalysis conforms to the development directions of atom economy and green chemistry. It has drawn substantial attention from scholars and entrepreneurs due to its application potential. Several studies have been performed to explore its application in synthesis of several pharmaceutical intermediates and numerous nitrilases have been developed as the industrial catalysts. Whereas, mining and modification of nitrilases are gradually becoming research focuses. Moreover, with the rapid advances of modern molecular biology as well as the advent of the third wave of biocatalysis, gene engineering has become a common approach for constructing recombinant strains. The significant advantages of nitrilase-mediated biocatalysis can be represented in maximum degree through improving the catalytic activity of nitrilase and modifying its catalytic properties, which would lay the foundation for more applications of nitrilases in the future. In this review, the application and development for the synthesis of pharmaceutical intermediates with nitrilase are summarized, as well as unprecedented opportunities and challenges in this field are discussed.

Contents
1 Introduction
2 Research overview of nitrilase
3 Existence range of nitrilase
4 Type of nitrilase catalysts and obtaining manners
4.1 Wild enzyme
4.2 Genetically engineered enzyme
5 The applications in the synthesis of pharmaceutical intermediates
5.1 Picolinic acid
5.2 (R)-Mandelic acid and its derivatives
5.3 Cyanocarboxylic acid
5.4 Pharmaceutical amino acid
5.5 Glycolic acid
6 Conclusion and outlook

中图分类号: 

()
[1] Debabov V, Yanenko A. Rev. J. Chem., 2011, 1 (4): 385.
[2] Gong J S, Lu Z M, Li H, Shi J S, Zhou Z M, Xu Z H. Microb. Cell Fact., 2012, 11: 142.
[3] Schmid A, Dordick J S, Hauer B, Kiener A, Wubbolts M, Witholt B. Nature, 2001, 409: 258.
[4] Brady D, Beeton A, Zeevaart J, Kgaje C, Rantwijk F, Sheldon R A. Appl. Microbiol. Biotechnol., 2004, 64 (1): 76.
[5] Bornscheuer U T, Huisman G W, Kazlauskas R J, Lutz S, Moore J C, Robins K. Nature, 2012, 485 (7397): 185.
[6] Reetz M T. J. Am. Chem. Soc., 2013, 135 (34): 12480.
[7] Thimann K V, Mahadevan S. Arch Biochem. Biophys., 1964, 105 (1): 133.
[8] Robinson W G, Hook R H. J. Biol. Chem., 1964, 239: 4257.
[9] Kobayashi M, Shimizu S. FEMS Microbiol. Lett., 1994, 120 (3): 217.
[10] Velankar H, Clarke K G, Preez R d, Cowan D A, Burton S G. Trends Biotechnol., 2010, 28 (11): 561.
[11] Wang H, Li G, Li M, Wei D, Wang X. World J. Microbiol. Biotechnol., 2014, 30(1): 245.
[12] Zhu X Y, Gong J S, Li H, Lu Z M, Shi J S, Xu Z H. Chem. Pap., 2014, 68 (6): 739.
[13] Qiu J, Su E, Wang W, Wei D. Catal. Commun., 2014, 51: 19.
[14] Qiu J, Su E, Wang W, Wei D. Tetrahedr. Lett., 2014, 55(8): 448.
[15] Pai O, Banoth L, Ghosh S, Chisti Y, Banerjee U C. Process Biochem., 2014, 49 (4): 655.
[16] Oliveira J, Seleghim M, Porto A. Mar. Biotechnol., 2014, 16 (2): 156.
[17] Liu Z Q, Zhang X H, Xue Y P, Xu M, Zheng Y G. J. Agri. Food Chem., 2014, 62(20): 4685.
[18] Li H, Yang T, Gong J S, Xiong L, Lu Z M, Li H, Shi J S, Xu Z H. Bioprocess Biosyst. Eng., 2014, 38(1): 189.
[19] He Y C, Wu Y D, Pan X H, Ma C L. Biotechnol. Lett., 2014, 36 (2): 341.
[20] Bhatia S K, Mehta P K, Bhatia R K, Bhalla T C. Appl. Microbiol. Biotechnol., 2014, 98 (1): 83.
[21] Zhu X Y, Gong J S, Li H, Lu Z M, Zhou Z M, Shi J S, Xu Z H. J. Mol. Catal. B: Enzym., 2013, 97: 175.
[22] Yoshida T, Mitsukura K, Mizutani T, Nakashima R, Shimizu Y, Kawabata H, Nagasawa T. Biotechnol. Lett., 2013, 35 (5): 685.
[23] Xue Y P, Xu M, Chen H S, Liu Z Q, Wang Y J, Zheng Y G. Org. Process Res. Dev., 2013, 17 (2): 213.
[24] Kumar V, Bhalla T C. Biocatal. Biotransfor., 2013, 31 (1): 42.
[25] Zhang C S, Zhang Z J, Li C X, Yu H L, Zheng G W, Xu J H. Appl. Microbiol. Biotechnol., 2012, 95 (1): 91.
[26] Sharma N, Sharma M, Bhalla T. AMB Express, 2012, 2 (1): 25.
[27] Zhang Z J, Pan J, Liu J F, Xu J H, He Y C, Liu Y Y. J. Biotechnol., 2011, 152 (1/2): 24.
[28] Sharma N, Sharma M, Bhalla T. J. Ind. Microbiol. Biotechnol., 2011, 38 (9): 1235.
[29] Gong J S, Lu Z M, Shi J S, Dou W F, Xu H Y, Zhou Z M, Xu Z H. Appl. Biochem. Biotechnol., 2011, 165 (3/4): 963.
[30] Schreiner U, Hecher B, Obrowsky S, Waich K, Klempier N, Steinkellner G, Gruber K, Rozzell J D, Glieder A, Winkler M. Enzyme Microb. Technol., 2010, 47 (4): 140.
[31] Kumar S, Mohan U, Kamble A L, Pawar S, Banerjee U C. Bioresour. Technol., 2010, 101 (17): 6856.
[32] Rustler S, Stolz A. Appl. Microbiol. Biotechnol., 2007, 75: 899.
[33] 曹明乐 (Cao M L), 姜兴林(Jiang X L), 张海波(Zhang H B), 咸漠(Xian M), 徐鑫(Xu X), 刘炜(Liu W). 生物过程(Bioprocess), 2012, 2: 70.
[34] 赵素娟(Zhao S J), 秦斌(Qin B), 马小双(Ma X S), 陈会来(Chen H L), 贾娴(Jia X), 游松(You S). 沈阳药科大学学报(J. Shenyang Pharm. Univ.), 2011, 28 (3): 226.
[35] Wu Y, Gong J S, Lu Z M, Li H, Zhu X Y, Li H, Shi J S, Xu Z H. J. Basic Microbiol., 2013, 53 (11): 934.
[36] Xue Y P, Xu S Z, Liu Z Q, Zheng Y G, Shen Y C. J. Ind. Microbiol. Biotechnol., 2011, 38 (2): 337.
[37] Oliveira J, Mizuno C, Seleghim M, Javaroti D, Rezende M, Landgraf M, Sette L, Porto A. Mar. Biotechnol., 2013, 15 (1): 97.
[38] 曹明乐 (Cao M L), 姜兴林(Jiang X L), 张海波(Zhang H B), 咸漠(Xian M), 徐鑫(Xu X), 刘炜(Liu W). 应用与环境生物学报(Chin. J. Appl. Environ. Biol.), 2013, 19 (2): 346.
[39] Stalker D M, McBride K E. J. Bacteriol., 1987, 169 (3): 955.
[40] Gong J S, Li H, Zhu X Y, Lu Z M, Wu Y, Shi J S, Xu Z H. PLoS ONE, 2012, 7 (11): e50622.
[41] Gong J S, Lu Z M, Li H, Zhou Z M, Shi J S, Xu Z H. Appl. Microbiol. Biotechnol., 2013, 97 (15): 6603.
[42] DeSantis G, Zhu Z, Greenberg W A, Wong K, Chaplin J, Hanson S R, Farwell B, Nicholson L W, Rand C L, Weiner D P, Robertson D E, Burk M J. J. Am. Chem. Soc., 2002, 124 (31): 9024.
[43] Bayer S, Birkemeyer C, Ballschmiter M. Appl. Microbiol. Biotechnol., 2011, 89 (1): 91.
[44] Qiu J, Su E Z, Wang H L, Cai W W, Wang W, Wei D Z. Appl. Biochem. Biotechnol., 2014, 173(2): 365.
[45] Kaplan O, Bezouška K, Malandra A, Veselá A, Pet D?í D?ková A, Felsberg J, Rinágelová A, K D?en V, Martínková L. Biotechnol. Lett., 2011, 33 (2): 309.
[46] DeSantis G, Wong K, Farwell B, Chatman K, Zhu Z, Tomlinson G, Huang H, Tan X, Bibbs L, Chen P, Kretz K, Burk M J. J. Am. Chem. Soc., 2003, 125 (38): 11476.
[47] Liu Z Q, Baker P J, Cheng F, Xue Y-P, Zheng Y-G, Shen Y-C. PLoS ONE, 2013, 8 (6): e67197.
[48] Kiziak C, Stolz A. Appl. Environ. Microbiol., 2009, 75 (17): 5592.
[49] Pet D?í D?ková A, Sosedov O, Baum S, Stolz A, Martínková L. J. Mol. Catal. B: Enzym., 2012, 77: 74.
[50] 温飞鹏(Wen F P), 张贤土(Zhang X T), 徐金龙(Xu J L), 程美琴(Cheng M Q), 邓小聪(Deng X C), 钟起玲(Zhong Q L). 应用化工(Appl. Chem. Ind.), 2010, 39 (10): 1552.
[51] Mathew C D, Nagasawa T, Kobayashi M, Yamada H. Appl. Environ. Microbiol., 1988, 54 (4): 1030.
[52] Maksimova Y G, Vasilyev D M, Ovechkina G V, Maksimov A Y, Demakov V A. Appl. Biochem. Microbiol., 2013, 49 (4): 347.
[53] Yamamoto K, Oishi K, Fujimatsu I, Komatsu K. Appl. Environ. Microbiol., 1991, 57 (10): 3028.
[54] Banerjee A, Dubey S, Kaul P, Barse B, Piotrowski M, Banerjee U. Mol. Biotechnol., 2009, 41 (1): 35.
[55] Zhang Z J, Pan J, Li C X, Yu H L, Zheng G W, Ju X, Xu J H. Bioprocess Biosyst. Eng., 2014, 37(7): 1241.
[56] Ni K, Wang H, Zhao L, Zhang M, Zhang S, Ren Y, Wei D. J. Biotechnol., 2013, 167 (4): 433.
[57] Ress-Loschke M, Friedrich T, Hauer B, Mattes R, Engels D. US 6869783, 2005.
[58] Chauhan S, Wu S, Blumerman S, Fallon R D, Gavagan J E, DiCosimo R, Payne M S. Appl. Microbiol. Biotechnol., 2003, 61 (2): 118.
[59] Roy B N, Singh G P, Lathi P S, Agrawal M K. Indian J. Chem., 2012, 51: 1470.
[60] Xie Z, Feng J, Garcia E, Bernett M, Yazbeck D, Tao J. J. Mol. Catal. B: Enzym., 2006, 41 (3/4): 75.
[61] 徐美珍(Xu M Z), 任杰(Ren J), 龚劲松(Gong J S), 董文玥(Dong W Y), 吴洽庆(Wu Q Q), 许正宏(Xu Z H), 朱敦明(Zhu D M). 生物工程学报(Chin. J. Biotechnol.), 2013, 29 (1): 31.
[62] Zhu D, Mukherjee C, Biehl E R, Hua L. Adv. Synth. Catal., 2007, 349 (10): 1667.
[63] Alonso F O M, Oestreicher E G, Antunes O A C. Braz J Chem. Eng., 2008, 25 (1): 1.
[64] Jin L Q, Li Z T, Liu Z Q, Zheng Y G, Shen Y C. J. Ind. Microbiol. Biotechnol., 2014, 41(10): 1479.
[65] Liang L Y, Zheng Y G, Shen Y C. Process Biochem., 2008, 43 (7): 758.
[66] Panova A, Mersinger L J, Liu Q, Foo T, Roe D C, Spillan W L, Sigmund A E, Ben-Bassat A, Wagner L W, O’Keefe D P, Wu S, Petrillo K L, Payne M S, Breske S T, Gallagher F G, DiCosimo R. Adv. Synth. Catal., 2007, 349 (8/9): 1462.
[67] He Y C, Xu J H, Su J H, Zhou L. Appl. Biochem. Biotechnol., 2010, 160 (5): 1428.
[68] Wu S, Fogiel A J, Petrillo K L, Jackson R E, Parker K N, DiCosimo R, Ben-Bassat A, O’Keefe D P, Payne M S. Biotechnol. Bioeng., 2008, 99 (3): 717.
[69] Zaks A. Curr. Opin. Chem. Biol., 2001, 5 (2):
[70] Vejvoda V, Kubác D, Davidová A, Kaplan O, Sulc M, Sveda O, Chaloupková R, Martínková L. Process Biochem., 2010, 45 (7): 1115.
[1] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
[2] 胡安东, 周顺桂, 叶捷. 生物杂化体介导的半人工光合作用:机理、进展及展望[J]. 化学进展, 2021, 33(11): 2103-2115.
[3] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[4] 白东亚, 何军邀, 欧阳斌, 黄金, 王普. 手性芳基醇的生物催化不对称合成[J]. 化学进展, 2017, 29(5): 491-501.
[5] 孙佳, 王普, 章鹏鹏, 黄金. 甘油在微生物代谢合成及生物催化中的应用[J]. 化学进展, 2016, 28(9): 1426-1434.
[6] 赵亚男, 王梦凡, 齐崴, 苏荣欣, 何志敏. 基于肽组装凝胶的超分子模拟酶[J]. 化学进展, 2016, 28(11): 1664-1671.
[7] 赵媛, 曾金, 林英武. 基于蛋白质骨架的人工水解酶的理性设计[J]. 化学进展, 2015, 27(8): 1102-1109.
[8] 冯旭东, 李春. 酶的改造及其催化工程应用[J]. 化学进展, 2015, 27(11): 1649-1657.
[9] 石玉刚, 党亚丽, 刘玉华, 白雪. 生物法与化学法制备硫酸软骨素[J]. 化学进展, 2014, 26(08): 1378-1394.
[10] 申刚义, 于婉婷, 刘美蓉, 崔勋. 固定化酶微反应器的制备及应用[J]. 化学进展, 2013, 25(07): 1198-1207.
[11] 颜范勇, 李楚盈, 梁小乐, 代林枫, 王猛, 陈莉*. Baeyer-Villiger氧化反应的不同催化体系[J]. 化学进展, 2013, 25(06): 900-914.
[12] 刘湘, 潘争光, 许建和. 手性芳基邻二醇的不对称合成[J]. 化学进展, 2011, 23(5): 903-913.
[13] 王德先 王梅祥. 含三元环腈的生物转化反应与应用*[J]. 化学进展, 2010, 22(07): 1397-1402.
[14] 郭坤 张京京 李浩然 杜竹玮. 微生物电解电池制氢*[J]. 化学进展, 2010, 22(04): 748-753.
[15] 王梦凡 齐崴 苏荣欣 何志敏. 交联酶聚体技术研究进展*[J]. 化学进展, 2010, 22(01): 173-178.