English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 559-570 DOI: 10.7536/PC141108 前一篇   后一篇

所属专题: 电化学有机合成

• 综述与评论 •

基于脲衍生物阴离子识别的电化学检测

李敏睿*, 郭永亮, 杨保平, 郭军红, 崔锦峰   

  1. 兰州理工大学石油化工学院 兰州 730050
  • 收稿日期:2014-11-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 李敏睿 E-mail:liminrui@lut.cn
  • 基金资助:
    甘肃省自然科学基金青年基金项目(No. 1212RJYA018)资助

Electrochemical Analyses of Anion Recognition Based on Urea Derivatives

Li Minrui*, Guo Yongliang, Yang Baoping, Guo Junhong, Cui Jinfeng   

  1. College of Petrochemical Technology, Lanzhou University of Technology, Lanzhou 730050, China
  • Received:2014-11-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the Natural Science Foundation of Gansu Province (No. 1212RJYA018).
作为优良的氢键给予体,脲基(—NH—CO—NH—)是构筑阴离子识别受体的理想结构单元.而电化学方法因其方便快捷、灵敏度高等优点,近年来被广泛应用于阴离子的识别检测.本文对脲类受体的电化学阴离子识别进行了讨论,主要包括:(i) 归纳整理了电化学阴离子识别的机理,包括识别位点与阴离子结合之后对氧化还原中心的5种扰动机理和溶液中电化学测试受体和阴离子相互作用时常见现象的分析及对应结合常数的计算; (ii) 电活性脲类阴离子受体的研究进展,包括受体分子的设计、识别和机理; (iii) 探讨了该领域的后续发展方向.
As an excellent hydrogen-bond donor, urea is a kind of ideal unit for constructing anion recognition receptors based on multiple hydrogen bonds. Electrochemical technology has been widely applied in anion binding in recent years due to its rapid, sensitive and convenient measurement. This review summarizes some distinctive aspects of electrochemical analyses of anion recognition based on urea derivatives:(i) we aim to illustrate the mechanisms and methodologies of electrochemical experiments about the interactions between urea receptors modified by the redox-active center and anions in solution, (ii) the most recent advances in the field are also detailed including design, synthesis and the interpretation of the solution behavior, and (iii) the trends of development in this field are discussed.

Contents
1 Introduction
2 Mechanism of electrochemical analyses of anion recognition
3 Anion receptors with redox unit
3.1 Anion receptors based on ferrocene
3.2 Others
4 Prospects

中图分类号: 

()
[1] Sessler J L, Gale P A, Cho W-S. Anion Receptor Chemistry. Cambridge: The Royal Society of Chemistry, 2006, 327.
[2] Beer P D, Gale P A. Angew. Chem. Int. Ed., 2001, 40: 486.
[3] Bianchi A, Bowman-James K, Garcia-Espaa E. Supramolecular Chemistry of Anions. New York: Wiley-VCH, 1997.
[4] Nijhuis C A, Ravoo B J, Huskens J, Reinhoudt D N. Coord. Chem. Rev., 2007, 251: 1761.
[5] Bu J, Lilienthal N D, Woods J E, Nohrden C E, Hoang K T, Truong D, Smith D K. J. Am. Chem. Soc., 2005, 127: 6423.
[6] Beer P D, Gale P A, Chen Z. Adv. Phys. Org. Chem. Bethell D Ed. London: Academic Press, 1998. Vol. 31, 1.
[7] 胡京汉(Hu J H), 陈娟娟(Chen J J), 李建斌(Li J B), 祁京(Qi J). 无机化学学报(Chin. J. Inorg. Chem.), 2014, 30: 2544.
[8] Duke R M, Veale E B, Pfeffer F M, Kruger P E, Gunnlaugsson T. Chem. Soc. Rev., 2010, 39: 3936.
[9] Gunnlaugsson T, Glynn M, Tocci G M, Kruger P E, Pfeffer F M. Coord. Chem. Rev., 2006, 250: 3094.
[10] Xu Z, Chen X, Kim H N, Yoon J. Chem. Soc. Rev., 2010, 39: 127.
[11] 曾振亚(Zeng Z Y), 何永炳(He Y B), 孟令芝(Meng L Z). 化学进展(Prog. Chem.), 2005, 17(2): 254.
[12] 吴芳英(Wu F Y), 张煊(Zhang X), 江云宝(Jiang Y B). 高等学校化学学报(Chem. Res. Chin. Univ.), 2003, 24(11): 1990.
[13] Nishizawa S, Bühlmann P, Iwao M, Umezawa Y. Tetra. Lett., 1995, 36: 6483.
[14] Fan E, Van Arman S A, Kincaid S, Hamilton A D. J. Am. Chem. Soc., 1993, 115: 369.
[15] Beer P D, Bayly S R. Top. Curr. Chem., 2005, 255: 125.
[16] 钱小红(Qian X H), 金灿(Jin C), 张晓宁(Zhang X N), 姜艳(Jiang Y), 林晨(Lin C), 王乐勇(Wang L Y). 化学进展(Prog. Chem.), 2014, 26(10): 1701.
[17] Smith P J, Reddington M V, Wilcox C S. Tetrahedron Lett., 1992, 33: 6085.
[18] Nishizawa S, Bühlmann P, Iwao M, Umezawa Y. Tetrahedron Lett., 1995, 36: 6483.
[19] Li A-F, Wang J H, Wang F, Jiang Y B. Chem. Soc. Rev., 2010, 39: 3729.
[20] Jagessar R C, Shang M, Scheidt W R, Burns D H. J. Am. Chem. Soc., 1998, 120: 11684.
[21] Custelcean R, Moyer B A, Bryantsev V S, Hay B P. Cryst. Growth Des., 2006, 6: 555.
[22] Gale P A. Chem. Soc. Rev., 2010, 39: 3746.
[23] Wenzel M, Hiscock J R, Gale P A. Chem. Soc. Rev., 2012, 41: 480.
[24] Gale P A, Busschaert N, Haynes C J E, Karagiannidis L E, Kirby I L. Chem. Soc. Rev., 2014, 43: 205.
[25] 魏梅莹(Wei M Y), 李少光(Li S G), 贾传东(Jia C D), 吴彪(Wu B). 高等学校化学学报(Chem. Res. Chin. Univ.), 2011, 32(9): 1939.
[26] 陈政(Chen Z). 科学(Science), 1995, 47(1): 40.
[27] Miller S R, Gustowski D A, Chen Z H, Gokel G W, Echegoyen L, Kaifer A E. Anal. Chem., 1988, 60: 2021.
[28] Amendola V, Fabbrizzi L, Mosca L. Chem. Soc. Rev., 2010, 39: 3889.
[29] Pratt M D, Beer P D. Polyhedron, 2003, 22: 649.
[30] Otón F, Tárraga A, Espinosa A, Velasco M D, Molina P. J. Org. Chem., 2006, 71: 4590.
[31] Laurent P, Miyaji H, Collinson S R, Prokeš I, Moody C J, Tucker J H R, Slawin A M Z. Org. Lett., 2002, 4: 4037.
[32] Willener Y, Joly K M, Moody C J, Tucker J H R. J. Org. Chem., 2008, 73: 1225.
[33] Otón X X, Tarraga A, Espinosa A, Velasco M D, Bautista D, Molina P. J. Org. Chem., 2005, 70: 6603.
[34] Bard A J, Faulkner L R. Electrochemical Methods. New York: John Wiley & Sons, 1980, p29.
[35] Evans A J, Matthews S E, Cowley A R, Beer P D. Dalton Trans., 2003: 4644.
[36] Moon K, Kaifer A E. J. Am. Chem. Soc., 2004, 126: 15016.
[37] Li M, Wu B, Jia C, Huang X, Zhao Q, Shao S, Yang X J. Chem. Eur. J., 2011, 17: 2272.
[38] Li M, Hao Y, Wu B, Jia C, Huang X, Yang X J. Org. Biomol. Chem., 2011, 9: 5637.
[39] Evans N H, Beer P D. Org. Bio. Chem., 2011, 9: 92.
[40] Li M, Wu B, Cui F, Hao Y, Huang X, Yang X J. Z. Anorg. Allg. Chem., 2011, 637: 2306.
[41] Huang X, Wu B, Jia C, Hay B P, Li M, Yang X J. Chem. Eur. J., 2013, 19: 9034.
[42] Alonso B, Casado C M, Cuadrado I, Morána M, Kaifer A E. Chem. Commun., 2002, 1778.
[43] 王建军(Wang J J), 王立(Wang L), 王学杰(Wang X J). 化学进展(Prog. Chem.), 2003, 15(5): 409.
[44] Valério C, Fillaut J L, Ruiz J, Guittard J, Blais J C, Astruc D. J. Am. Chem. Soc., 1997, 119: 2588.
[45] Beer P D, Davis J J, Drillsma-Milgrom D A, Szemes F. Chem. Commun., 2002: 1716.
[46] Cormode D P, Evans A J, Davis J J, Beer P D. Dalton Trans., 2010, 39: 6532.
[47] Ito A, Sakamaki D, Ino H, Taniguchi A, Hirao Y, Tanaka K, Kanemoto K, Kato T. Eur. J. Org. Chem., 2009: 4441.
[48] Clare J P, Statnikov A, Lynch V, Sargent A L, Sibert J W. J. Org. Chem., 2009, 74: 6637.
[49] Mahmoud K, Long Y T, Schatte G, Kraatz H B. J. Organomet. Chem., 2004, 689: 2250.
[50] Bu J, Lilienthal N D, Woods J E, Nohrden C E, Hoang K P, Truong D, Smith D K. J. Am. Chem. Soc., 2005, 127: 6423.
[1] 姜信欣, 赵成军, 钟春菊, 李建平*. MOF构筑的电化学传感器及应用[J]. 化学进展, 2017, 29(10): 1206-1214.
[2] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[3] 龚晚君, 赵智勇, 刘思敏*. 葫芦脲作为超分子纳米反应器/催化剂的研究[J]. 化学进展, 2016, 28(12): 1732-1742.
[4] 邢立文, 马占芳. 基于碳纳米材料的无酶电化学传感器同时检测抗坏血酸、多巴胺和尿酸[J]. 化学进展, 2016, 28(11): 1705-1711.
[5] 张宁强, 黄晓玲, 班琳哲, 苏海全. 葫芦[n]脲应用研究进展[J]. 化学进展, 2015, 27(2/3): 192-211.
[6] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.
[7] 孙兵, 艾仕云. 光电化学传感器的构建及应用[J]. 化学进展, 2014, 26(05): 834-845.
[8] 王赛, 吴斌, 段军飞, 方江邻*, 谌东中. 基于脲基氢键组装的功能超分子凝胶[J]. 化学进展, 2014, 26(01): 125-139.
[9] 尉艳, 刘中刚, 高超, 王伦, 刘锦淮, 黄行九. 纳米材料电化学与生物传感器--有机微污染物检测新途径[J]. 化学进展, 2012, 24(04): 616-627.
[10] 曹成, 魏太保, 王爱霞, 林奇, 姚虹, 张有明. 含腙主体的阴离子识别[J]. 化学进展, 2011, 23(6): 1069-1080.
[11] 陈城, 王如勇, 傅南雁. 方酸染料在离子识别中的研究[J]. 化学进展, 2011, 23(4): 739-749.
[12] 林奇,魏太保,姚虹,张有明. 含氮杂环类阴离子受体* [J]. 化学进展, 2009, 21(6): 1207-1216.
[13] 王全国,曾凡花,解永树,朱为宏. 异卟啉研究进展*[J]. 化学进展, 2009, 21(0708): 1523-1533.
[14] 杨海朋,陈仕国,李春辉,陈东成,戈早川. 纳米电化学生物传感器*[J]. 化学进展, 2009, 21(01): 210-216.
[15] 杨辉,谭业邦,黄晓玲,王月霞. 葫芦脲的研究进展*[J]. 化学进展, 2009, 21(01): 164-173.
阅读次数
全文


摘要