English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 482-491 DOI: 10.7536/PC141103 前一篇   后一篇

• 综述与评价 •

水和醇类分子及其混合物在纳米孔道材料中的传输扩散

许健, 樊建芬*, 闫希亮, 于怡, 张明明   

  1. 苏州大学材料与化学化工学部 苏州 215123
  • 收稿日期:2014-11-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 樊建芬 E-mail:jffan1305@163.com
  • 基金资助:
    国家自然科学基金项目(No. 21173154)和江苏高校优势学科建设工程项目资助

Transport and Diffusion of Water, Alcohols and Their Mixtures Through Nano-Pore Materials

Xu Jian, Fan Jianfen*, Yan Xiliang, Yu Yi, Zhang Mingming   

  1. College of Chemistry, Chemical Engineering and Materials Science, Soochow University, Suzhou 215123, China
  • Received:2014-11-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China(No. 21173154) and the Priority Academic Program Development of Jiangsu Higher Education Institutions.
随着计算机科学技术的飞速发展,理论计算特别是分子动力学模拟技术在研究受限流体的性质时发挥着独特的作用.本文综述了近年来水和醇类分子及其混合物在纳米孔道材料中传输扩散的研究进展,包括单组分水、甲醇和乙醇等在多种纳米孔道材料中的传输扩散,以及甲醇/水和乙醇/水等混合物在碳纳米管和沸石膜中的吸附和分离,讨论了体系温度、分子浓度以及纳米孔道材料结构等因素对水和醇类分子传输扩散过程的影响.
With the rapid development of computer science, theoretical computation, especially molecular dynamic simulation plays a unique role in the investigation of confined fluids. This review surveys the progress in the study of the transport and diffusion of water, alcohols and their mixture in nano-pore materials, including the behavior of pure water, methanol and ethanol, and the absorption and separation of methanol/water, ethanol/water mixtures, etc., through carbon nanotubes and zeolites. The influences of system temperature, molecular concentration and the structural property of nano-pore materials on the transport and diffusion of water and alcohols are also summarized.

Contents
1 Introduction
2 Outline of molecular simulation
3 Transport and diffusion of pure water in nano-pore materials
3.1 Natural biological water channel
3.2 Synthetic nanoscale water channel
4 Transport and diffusion of pure alcohols in nano-pore materials
4.1 Methanol
4.2 Ethanol
4.3 Other alcohols
5 Transport and diffusion of alcohols/water mixtures in nano-pore materials
5.1 Methanol/water mixture
5.2 Ethanol/water mixture
6 Transport and diffusion of alcohol mixtures in nano-pore materials
7 Conclusion

中图分类号: 

()
[1] Preston G M, Agre P. Proc. Natl. Acad. Sci. USA, 1991, 88(24): 11110.
[2] Preston G M, Carroll T P, Guno W B, Agre P. Science, 1992, 256: 385.
[3] Murata K, Mitsuoka K, Hirai T, Walz T, Agre P, Heymann J B, Engel A, Fujiyoshi Y. Nature, 2000, 407: 599.
[4] De Groot B L, Engel A, Grubmüüller H. J. Mol. Biol., 2003, 325: 485.
[5] Sui H, Han B G, Lee J K, Walian P, Jap B K. Nature, 2001, 414: 872.
[6] Carloni P, Vidossich P, Cascella M. Protein, 2004, 55: 924.
[7] Trnroth-Horesefield S, Wang Y, Hedfalk K. Nature, 2006, 439: 688.
[8] Levitt D G, Elias S R, Hautman J M. Biochim. Biophys. Acta, 1978, 512: 436.
[9] De Groot B L, Tieleman D P, Pohl P. Biophys. J., 2002, 82: 2934.
[10] Iijima S, Chihashi T. Nature, 1993, 363: 603.
[11] Noon W H, Ausman K D, Smalley R E, Ma J P. Chem. Phys. Lett., 2002, 355: 445.
[12] Mashl R J, Joseph S, Aluru N R, Jakobsson E. Nano Lett., 2003, 3: 589.
[13] Koga K, Gao G T, Tanaka H, Zeng X C. Nature, 2001, 412: 802.
[14] Bai J, Wang J, Zeng X C. Proc. Natl. Acad. Sci., 2006, 103: 19664.
[15] De Souza N R, Kolesnikov A I, Burnham C J, Loong C K. J. Condes. Matter. Phys., 2006, 18: S2321.
[16] Hummer G, Rasaiah J C, Noworyta J P. Nature, 2001, 414: 188.
[17] Berezhkovskii A, Hummer G. Phys. Rev. Lett., 2002, 89, 064503.
[18] Vasenkov S, Karger J. Phys. Rev. E, 2002, 66: 052601.
[19] Striolo A. Nano Lett., 2006, 6: 633.
[20] Byl O, Liu J C, Wang Y, Yim W L, Johnson J K, Yates J T. J. Am. Chem. Soc., 2006, 128: 12090.
[21] Huang L L, Zhang L Z, Shao Q, Wang J, Lu L H, Lu X H, Jiang S Y, Shen W F. J. Phys. Chem. B, 2006, 110: 25761.
[22] Huang L L, Shao Q, Lu L H, Lu X H, Zhang L Z, Wang J, Jiang S Y. Phys. Chem. Chem. Phys., 2006, 8: 3836.
[23] Zhu Y D, Wei M J, Shao Q, Lu L H, Lu X H, Shen W F. J. Phys. Chem. C, 2009, 113: 882.
[24] Gordillo M C, Marti J. Chem. Phys. Lett., 2000, 329: 341.
[25] Hanasaki I, Nakatani A J. Chem. Phys., 2006, 124: 174714.
[26] Noon W H, Ausman K D, Smalley R E, Ma J P. Chem. Phys. Lett., 2002, 355: 445.
[27] Wan R Z, Li J Y, Lu H J, Fang H P. J. Am. Chem. Soc., 2005, 127: 7166.
[28] Wang S, Lu H J, Tu Y S, Wang C L, Fang H P. Chin. Phys. Lett., 2009, 26: 068702.
[29] Li J Y, Gong X J, Lu H J, Li D, Fang H P, Zhou R H. Proc. Natl. Acad. Sci., 2007, 104: 3687.
[30] Gong X J, Li J Y, Lu H J, Wang R Z, Li J C, Hu J, Fang H P. Nat. Nanotechnol., 2007, 2: 709.
[31] Chopra N G, Luyken R J, Cherrey K, Crespi V H, Cohen M L, Louie S G, Zettl A. Science, 1995, 269: 966.
[32] Won C Y, Aluru N R. J. Phys. Chem. C, 2008, 112: 1812.
[33] Zang J, Konduri S, Nair S, Sholl D S. J.Am. Chem. Soc., 2009, 3(6): 1548.
[34] Engels M, Bashford D, Ghadiri M R. J. Am. Chem. Soc., 1995, 117(36): 9151.
[35] Tarek M, Maigret B, Chipot C. Biophys. J., 2003, 85(4): 2287.
[36] Zhu J C, Cheng J, Liao Z X, Lai Z H, Liu B. J. Comput. Aided. Mol. Des., 2008, 22: 773.
[37] Liu J, Fan J F, Tang M, Zhou W Q. J. Phys. Chem. A, 2010, 114: 2376.
[38] Liu J, Fan J F, Tang M, Zhou W Q. J. Phys. Chem. B, 2010, 114: 12183.
[39] Liu J, Fan J F, Tang M, Zhou W Q. J. Chem. Inf. Model., 2012, 52: 2132.
[40] Liu D Y, Fan J F, Song X Z, Li R, Li H. Comput. Mater. Sci., 2013, 78: 47.
[41] Li H, Fan J F, Li R, Yan X L, Yu Y. J. Mol. Model, 2014, 20: 2370.
[42] Yamaguchi T, Hidaka K, Soper A K. Mol. Phys., 1999, 96: 1159.
[43] Adya A K, Bianchi L, Wormald C J. J. Chem. Phys., 2000, 112: 4231.
[44] Narten A H, Habenschuss A. J. Chem. Phys., 1982, 77: 2144.
[45] Jorgensen W L. J. Chem. Phys., 1986, 90: 1276.
[46] Jorgensen W L, Briggs J M, Conteras M L. J. Phys. Chem., 1990, 94: 1683.
[47] Kosztolányi T, Bakó I, Pálinkás G. J. Chem. Phys., 2003, 118: 4546.
[48] Morishige K, Kawano K. J. Chem. Phys., 2000, 112: 11023.
[49] Morineau D, Guégan R, Xia Y D, Alba-Simionesco C. J. Chem. Phys., 2004, 121: 1466.
[50] Guegan R, Morineau D, Alba-Simionesco C. J. Chem. Phys., 2005, 317: 236.
[51] Sliwinska-Bartkowiak M, Dudziak G, Sikorski R, Gras R, Gubbins K E, Radhakrishnan R. Phys. Chem. Chem. Phys., 2001, 3: 1179.
[52] Zhang Q X, Zheng J, Shevade A, Zhang L Z, Gehrke S H, Heffelfinger G S, Jiang S Y. J. Chem. Phys., 2002, 117: 808.
[53] Shah R, Gale J D, Payne M C. J. Phys. Chem., 1996, 100: 11688.
[54] Haase F, Sauer J. Micropor. Mesopor. Mater., 2000, 379: 35.
[55] Stich I, Gale J D, Terakura K, Payne M C. Chem. Phys. Lett., 1998, 283: 402.
[56] Plant D F, Maurin G, Bell R G. J. Phys. Chem. B, 2006, 110: 15926.
[57] Nanok T, Vasenkov S, Keil F J, Fritzsche S. Microporous Mesoporous Mater., 2010, 127: 176.
[58] Plant D F, Maurin G, Bell R G. J. Phys. Chem. B, 2007, 111: 2836.
[59] Dicks A L. J. Power Sources, 2006, 156: 128.
[60] Burghaus U, Bye D, Cosert K, Goering J, Guerard A, Kadossov E, Lee E, Nadoyama Y, Richter N, Sxhaefer E. Chem. Phys. Lett., 2007, 442: 344.
[61] Ellison M D, Morris S T, Sender M R, Brigham J, Padgett N E. J. Phys. Chem. C, 2007, 111: 18127.
[62] Tang Z R. Physica B, 2010, 405: 770.
[63] Ganji M D, Goodarzi M, Nashtahosseini M, Mommadi-nejad A. Commun. Theor. Phys., 2011, 55: 365.
[64] Rebeca G F, Juan R G, Marco D A, Modesto O. J. Am. Chem. Soc., 2009, 131: 15678.
[65] Saiz L, Padro J A, Guardia E. J. Phys. Chem. B, 1997, 101: 78.
[66] Wensink E J W, Hoffmann A C, van Maaren P J, van der Spoel D. J. Chem. Phys., 2003, 119: 7308.
[67] Jorgensen W L, Maxwell D S, Tirado-Rives J. J. Am. Chem. Soc., 1996, 118: 11225.
[68] Stewart E, Shields R L, Taylor R S. J. Phys. Chem. B, 2003, 107: 2333.
[69] Van de Spoel D, van Maaren P J, Larsson P, Timneanu N. J. Phys. Chem. B, 2006, 110: 4393.
[70] Bertolini D, Cassettari M, Ferrario M. Adv. Chem. Phys., 1985, 62: 277.
[71] Geiger A, Mausbach P. Springer Netherlands, 1991, 1713.
[72] Haughney M, Ferrario M, Mcdonald I R. J. Phys. Chem., 1987, 91(19): 4934.
[73] Narten A H, Habenschuss A. J. Chem. Phys., 1984, 80(7): 3387.
[74] Jorgensen W L. J. Am. Chem. Soc., 1981, 103(2): 341.
[75] Jorgensen W L. J. Am. Chem. Soc., 1981, 103(2): 345.
[76] Jorgensen W L. J. Am. Chem. Soc., 1982, 104(2): 3738.
[77] Sarkar S, Joarder R N. J. Chem. Phys., 1994, 100(7): 5118.
[78] Zhou Q L, Zhou Q, Forman S A. Biochem., 2000, 39(48): 14920.
[79] Ren H, Zhao Y, Dwyer D S, Peoples R W. J. Biol. Chem., 2012, 287(33): 27302.
[80] Ohkubo T, Kaneko K. Colloid Surf. A, 2001, 187: 177.
[81] 邵庆(Shao Q), 黄亮亮(Huang L L), 陆小华(Lu X H), 吕玲红(Lv L H), 朱育丹(Zhu Y D), 沈文枫(Shen W F). 化学学报(Acta Chimica Sinica), 2007, 65(20): 2217.
[82] Shao Q, Huang L L, Zhou J, Lu L H, Zhang L Z, Lu X H, Jiang S Y, Gubbins K E, Zhu Y D, Shen W F. J. Phys. Chem. C, 2007, 111: 15677.
[83] Wesslein M, Heintz A, Reinhardt G A, Lichtenthaler R N. Pervaporation Process Chem. Ind., Bakish Materials Corp., 1988. p172.
[84] Liu Q, Noble R D, Falconer J L, Funke H H. J. Membrane Sci., 1996, 117: 163.
[85] Shevade A V, Jiang S Y, Gubbins K E. J. Chem. Phys., 2000, 113: 6933.
[86] Yang J Z, Chen Y, Zhu A M, Liu Q L, Wu J Y. J. Membrane Sci., 2008, 318: 327.
[87] Wu J Y, Liu Q L, Xiong Y, Zhu A M, Chen Y. J. Phys. Chem. B, 2009, 113(13): 4267.
[88] Csányi É, Kristóf T, Lendvay G. J. Phys. Chem. C, 2009, 113: 12225.
[89] Lee K, Lee J, Kim S, Ju B. Carbon, 2011, 49: 787.
[90] Liu Y, Consta S, Goddard W A. J. Nanosci. Nanotechnol., 2010, 10: 3834.
[91] Zheng J M, Lennon E, Tsao H K, Sheng Y J, Jiang S Y. J. Chem. Phys., 2005, 122: 214702.
[92] Yang L, Gao Y Q. J. Am. Chem. Soc., 2010, 132: 842.
[93] Zhao W H, Shang B, Du S P, Yuan L F, Yang J L, Zeng X C. J. Chem. Phys., 2012, 137: 034501.
[94] Hwang S, Shao Q, Williams H, Hilty C, Gao Y Q. J. Phys. Chem. B, 2011, 115: 6653.
[95] 闵恩泽(Min E Z). 化学进展(Prog.Chem.), 2006, 18: 131.
[96] Yang Y C, Min Q, Yang G R, Wang Y D, Hai Y. Petrochem. Technol., 1994, 23: 3568.
[97] Nomura M, Yamaguchi T, Nakao S. J. Membr. Sci., 1998, 144: 161.
[98] Takaba H, Kayama A, Nakao S. J. Phys. Chem. B, 2000, 104: 6353.
[99] Jia W, Murad S. Mol. Phys., 2006, 104: 3033.
[100] Lu L, Shao Q, Huang L L, Lu X H. Fluid Phase Equilibr., 2007, 261(1): 191.
[101] Kristof T, Csanyi E, Rutkai G, Merenyi L. Mol. Simul., 2006, 32: 869.
[102] Rutkai G, Csányi E, Kristóf T. Micropor. Mesopor. Mater., 2008, 114: 455.
[103] Furukawa S, Goda K, Zhang Y, Nitta T. J. Chem. Eng. Jpn., 2004, 37: 67.
[104] Yang J Z, Liu Q L, Wang H T. J. Mem. Sci., 2007, 291: 1.
[105] Krishna R, van Baten J M. Langumir, 2010, 26(13): 10854.
[106] Guo S Y, Yu C, Gu X, Jin W Q, Zhong J, Chen C L. J. Mem. Sci., 2011, 376(1): 40.
[107] Krishna R, van Baten J M. J. Mem. Sci., 2010, 360: 476.
[108] Du S P, Zhao W H, Yuan L F. Chin. J. Chem. Phys., 2012, 25: 410.
[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[4] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[5] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[6] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[7] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[8] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[9] 杨一舟, 彭兵权, 雷晓玲, 方海平. 离子溶液中的芳香环:反常化学计量比的二维晶体和其铁磁性[J]. 化学进展, 2022, 34(7): 1524-1536.
[10] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[11] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[12] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[13] 南明君, 乔琳, 刘玉琴, 张华民, 马相坤. 无机水系液流电池研究[J]. 化学进展, 2022, 34(6): 1402-1413.
[14] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[15] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.