English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 395-403 DOI: 10.7536/PC141040 前一篇   后一篇

• 综述与评价 •

质子交换膜的传输通道微观结构对燃料电池性能的影响

刘旭1, 吴俊涛2, 霍江贝1, 孟晓宇1, 崔立山1, 周琼*1   

  1. 1. 中国石油大学(北京)理学院 北京 102249;
    2. 北京航空航天大学化学与环境学院 仿生智能界面科学与技术教育部重点实验室 仿生能源材料与器件北京市重点实验室 北京 100191
  • 收稿日期:2014-10-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 周琼 E-mail:zhouqiong_cn@163.com
  • 基金资助:
    国家自然科学基金项目(No.51373007, 51003004, 51303211)和国家重点基础研究发展计划(973)项目(No. 2010CB934700)资助

Effects of Conducting Channels Microstructure in Proton Exchange Membrane on the Performance of Fuel Cells

Liu Xu1, Wu Juntao2, Huo Jiangbei1, Meng Xiaoyu1, Cui Lishan1, Zhou Qiong*1   

  1. 1. College of Science, China University of Petroleum (Beijing), Beijing 102249, China;
    2. Key Laboratory of Bio-Inspired Smart Interfacial Science and Technology of Ministry of Education, Beijing Key Laboratry of Bio-inspired Energy Materials and Devices, School of Chemistry and Environment, Beihang University, Beijing 100191, China
  • Received:2014-10-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No.51373007, 51003004, 51303211), and the National Basic Research Program of China (No. 2010CB934700).
质子交换膜燃料电池因其高效、高能量密度、快速启动等独特优势在便携电子设备及汽车动力装置等应用中极具发展潜力。质子交换膜内的传输通道由于对膜质子传导性能有重要影响而受到研究者们的广泛关注。构筑有序结构的质子传输通道,能够获得质子电导率与燃料渗透率、热稳定性、化学稳定性等性能均衡提升的新型质子交换膜材料。本文结合近年来质子传输通道的研究进展,对控制聚合物的相形态从而构筑有序质子传输通道的研究进行了综述,并针对不同相形态所形成的有序通道对膜及燃料电池性能的影响进行了分类与评述,最后对其发展趋势进行了展望。
Proton exchange membrane fuel cell has been identified as the most promising power source for portable electronic apparatus and automobile power devices due to its unique advantages, such as high conversion efficiencies, high power density and fast start-ups at room temperature. The proton conducting channels in proton exchange membranes are attracting more and more attention, because they have significant influence on the proton conductivity of proton exchange membranes. The construction of well-aligned proton conducting channels in the membrane can not only achieve higher proton conductivity, but also improve the methanol barrier property, thermal stability and chemical stability of proton exchange membranes. The research progress of the proton conducting channels is reviewed in this paper, and the well-aligned proton conducting channels obtained by controlling the morphology of the membranes and their improvements on the performance of the proton exchange membrane fuel cells are also discussed. The present review attempts to summarize the effects of different types of morphologies and the resulting aligned proton conducting channels on the properties of proton exchange membranes as well as the performance of proton exchange membrane fuel cells. In the end, the outlook for future development of proton conducting channels in proton exchange membranes is also prospected.

Contents
1 Introduction
2 Proton conducting channels in PEM
3 Fabrication of well-aligned proton conducting channels and their effects on the performance of PEMFCs
3.1 Spherical microstructures
3.2 Cylindrical microstructures
3.3 Co-continuous microstructures
3.4 Lamellar microstructures
4 Conclusion

中图分类号: 

()
[1] 衣宝廉(Yi B L). 燃料电池——原理 · 技术 · 应用 (Fuel Cells: Principle, Technology, Application).北京: 化学工业出版社(Beijing: Chemical Industry Press), 2003. 160.
[2] Page K A, Soles C L, Runt J. Polymers for Energy Storage and Delivery: Polyelectrolytes for Batteries and Fuel Cells. Washington D C: American Chemical Society, 2012. 147.
[3] Doyle M, Rajendran G. Perfluorinated Membranes. NY: John Wiley & Sons, Ltd, 2010. 2.
[4] Kreuer K, Paddison S J, Spohr E, Schuster M. Chem. Rev., 2004, 104: 4637.
[5] Schuster M, Rager T, Noda A, Kreuer K D, Maier J. Fuel Cells, 2005, 5: 355.
[6] Hac?velio D?lu F, Okutan E, çelik S V, Ye?ilot S, Bozkurt A, K?l?ç A. Polymer, 2012, 53: 3659.
[7] Matsumoto K, Higashihara T, Ueda M. Macromolecules, 2009, 42: 1161.
[8] Ingratta M, Jutemar E P, Jannasch P. Macromolecules, 2011, 44: 2074.
[9] Tsang E M W, Zhang Z, Shi Z, Soboleva T, Holdcroft S. J. Am. Chem. Soc., 2007, 129: 15106.
[10] Peckham T J, Schmeisser J, Rodgers M, Holdcroft S. J. Mater. Chem., 2007, 17: 3255.
[11] Choi P, Jalani N H, Datta R. J. Electrochem. Soc., 2005, 152: E123.
[12] Kim S Y, Yoon E, Joo T, Park M J. Macromolecules, 2011, 44: 5289.
[13] Kim B, Kim J, Jung B. J. Membrane Sci., 2005, 250: 175.
[14] Kim D H, Choi J, Hong Y T, Kim S C. J. Membrane Sci., 2007, 299: 19.
[15] Hou J, Li J, Mountz D, Hull M, Madsen L A. J. Membrane Sci., 2013, 448: 292.
[16] Li J, Wilmsmeyer K G, Madsen L A. Macromolecules, 2008, 42: 255.
[17] Kreuer K, Portale G. Adv. Funct. Mater., 2013, 23: 5390.
[18] Einsla M L, Kim Y S, Hawley M, Lee H, Mcgrath J E, Liu B, Guiver M D, Pivovar B S. Chem. Mater., 2008, 20: 5636.
[19] Mauritz K A, Moore R B. Chem. Rev., 2004, 104: 4535.
[20] Gierke T D, Munn G E, Wilson F C. J. Polym. Sci.: Pol. Phys. Ed., 1981, 19: 1687.
[21] Loppinet B, Gebel G, Williams C E. J. Phys. Chem. B: Pol. Phys., 1997, 101: 1884.
[22] Loppinet B, Gebel G. Langmuir, 1998, 14: 1977.
[23] Schmidt-Rohr K, Chen Q. Nat.Mater., 2008, 7: 75.
[24] Damasceno B D, Franco A A, Malek K, Gebel G, Mossa S. ACS Nano, 2013, 7: 6767.
[25] Hsu W Y, Gierke T D. J. Membrane Sci., 1983, 13: 307.
[26] Hsu W Y, Gierke T D. Macromolecules, 1982, 15: 101.
[27] Barbi V, Funari S S, Gehrke R, Scharnagl N, Stribeck N. Polymer, 2003, 44: 4853.
[28] Gebel G. Polymer, 2000, 41: 5829.
[29] Bussian D A, O’Dea J R, Metiu H, Buratto S K. Nano Lett., 2007, 7: 227.
[30] O’Dea J R, Economou N J, Buratto S K. Macromolecules, 2013, 46: 2267.
[31] Yarusso D J, Cooper S L. Macromolecules, 1983, 16: 1871.
[32] Kreuer K D. J. Membrane Sci., 2001, 185: 29.
[33] Yakovlev S, Wang X, Ercius P, Balsara N P, Downing K H. J. Am. Chem. Soc., 2011, 133: 20700.
[34] Chen X C, Wong D T, Yakovlev S, Beers K M, Downing K H, Balsara N P. Nano Lett., 2014, 14: 4058.
[35] Campagne B, David G, Améduri B, Jones D J, Rozière J, Roche I. Macromolecules, 2013, 46: 3046.
[36] Wang L, Yi B L, Zhang H M, Xing D M. J. Phys. Chem. B, 2008, 112: 4270.
[37] Hazarika M, Jana T. ACS Appl. Mater. Interfaces, 2012, 4: 5256.
[38] Gasa J V, Weiss R A, Shaw M T. J. Membrane Sci., 2008, 320: 215.
[39] Nakabayashi K, Matsumoto K, Higashihara T, Ueda M. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 7332.
[40] Lee H, Badami A S, Roy A, Mcgrath J E. J. Polym. Sci. Part A: Polym. Chem., 2007, 45: 4879.
[41] Nieh M, Guiver M D, Kim D S, Ding J, Norsten T. Macromolecules, 2008, 41: 6176.
[42] Nakabayashi K, Higashihara T, Ueda M. J. Polym. Sci. Part A: Polym. Chem., 2010, 48: 2757.
[43] Park M J, Downing K H, Jackson A, Gomez E D, Minor A M, Cookson D, Weber A Z, Balsara N P. Nano Lett., 2007, 7: 3547.
[44] Li H, Liu Y. J. Mater. Chem. A, 2014, 2: 3783.
[45] Yao Y, Ji L, Lin Z, Li Y, Alcoutlabi M, Hamouda H, Zhang X. ACS Appl. Mater. Interfaces, 2011, 3: 3732.
[46] Sung K A, Kim W, Oh K, Choo M, Nam K, Park J. J. Power Sources, 2011, 196: 2483.
[47] Kumar M, Edwards B J, Paddison S J. J. Chem. Phys., 2013, 138: 064903.
[48] J K V. Thermodynamics of Systems Containing Flexible-Chain Polymers. Amsterdam: Elsevier, 1999.
[49] Olabisi O, Robeson L, Shaw M. Polymer-Polymer Miscibility. Academic Press: New York. 1979. 50.
[50] Wang J, Jiang S, Zhang H, Lv W, Yang X, Jiang Z. J. Membrane Sci., 2010, 364: 253.
[51] Chai Z, Wang C, Zhang H, Doherty C M, Ladewig B P, Hill A J, Wang H. Adv. Funct. Mater., 2010, 20: 4394.
[52] Tang H, Wan Z, Pan M, Jiang S P. Electrochem. Commun., 2007, 9: 2003.
[53] Ke C, Li X, Qu S, Shao Z, Yi B. Polym. Adv. Technol., 2012, 23: 92.
[54] Ke C, Li X, Shen Q, Qu S, Shao Z, Yi B. Int. J. Hydrogen Energ., 2011, 36: 3606.
[55] Gasa J V, Weiss R A, Shaw M T. J. Membrane Sci., 2008, 320: 215.
[56] Zhao S, Ren J, Wang Y, Zhang J. J. Membrane Sci., 2013, 437: 65.
[57] Guo W, Tang H, Sun M, Yang H, Pan M, Duan J. Int. J. Hydrogen Energ., 2012, 37: 9782.
[58] Kimura Y, Chen J, Asano M, Maekawa Y, Katakai R, Yoshida M. Nuclear Instruments and Methods in Physics Research Section B: Beam Interactions with Materials and Atoms, 2007, 263: 463.
[59] Tamura T, Kawakami H. Nano Lett., 2010, 10: 1324.
[60] Onuma A, Kawaji J, Morishima M, Mizukami T, Takamori Y, Yamaga K. Polymer, 2014, 55: 2673.
[61] Li N, Wang C, Lee S Y, Park C H, Lee Y M, Guiver M D. Angew. Chem. Int. Ed., 2011, 50: 9158.
[62] Zapata P, Mountz D, Meredith J C. Macromolecules, 2010, 43: 7625.
[63] Fu R Q, Hong L, Lee J Y. Fuel Cells, 2008, 8: 52.
[64] Lee C, Wang Y. J. Polym. Sci. Part A: Polym. Chem., 2008, 46: 2262.
[65] Kwon Y H, Kim S C, Lee S. Macromolecules, 2009, 42: 5244.
[66] Hammond P T. Adv. Mater., 2004, 16: 1271.
[67] Li L, Ma R, Ebina Y, Fukuda K, Takada K, Sasaki T. J. Am. Chem. Soc., 2007, 129: 8000.
[68] Decker B, Hartmann-Thompson C, Carver P I, Keinath S E, Santurri P R. Chem. Mater., 2009, 22: 942.
[69] Yang B, Manthiram A. Electrochem. Commun., 2004, 6: 231.
[70] Wang J, Xiao L, Zhao Y, Wu H, Jiang Z, Hou W. J. Power Sources, 2009, 192: 336.
[71] Shin D W, Lee S Y, Lee C H, Lee K, Park C H, Mcgrath J E, Zhang M, Moore R B, Lingwood M D, Madsen L A, Kim Y T, Hwang I, Lee Y M. Macromolecules, 2013, 46: 7797.
[72] Beers K M, Balsara N P. ACS Macro Letters, 2012, 1: 1155.
[73] Park M J, Balsara N P. Macromolecules, 2009, 43: 292.
[74] Auerbach S M, Carrado K A, Dutta P K. Handbook of Layered Materials. New York: Marcel Dekker, Inc., 2004. 91.
[75] Alberti G, Casciola M, D’Alessandro E, Pica M. J. Mater. Chem., 2004, 14: 1910.
[76] Bauer F, Willert-Porada M. J. Membrane Sci., 2004, 233: 141.
[77] He Y, Tong C, Geng L, Liu L, Lü C. J. Membrane Sci., 2014, 458: 36.
[1] 卢明龙, 张晓云, 杨帆, 王 练, 王育乔. 表界面调控电催化析氧反应[J]. 化学进展, 2022, 34(3): 547-556.
[2] 王继乾*, 闫宏宇, 李洁, 张丽艳, 赵玉荣, 徐海*. 基于多肽自组装的人工金属酶[J]. 化学进展, 2018, 30(8): 1121-1132.
[3] 刘炜珍, 郑嘉毅, 吴智诚, 刘章斌, 林璋. 表界面调控晶体变化微观机制探索与铬渣治理研究的结合[J]. 化学进展, 2017, 29(9): 1053-1061.
[4] 翟文中, 何玉凤, 王斌, 熊玉兵, 宋鹏飞, 王荣民. 聚合物Janus微粒材料的制备与应用[J]. 化学进展, 2017, 29(1): 127-136.
[5] 郭艳, 彭波, 张春雨, 张学全. 聚丙烯釜内合金的相态研究[J]. 化学进展, 2015, 27(12): 1815-1821.
[6] 曲爱兰,文秀芳,丕皮辉,程江,杨卓如. 超疏水涂膜的研究进展*[J]. 化学进展, 2006, 18(11): 1434-1439.
[7] 封伟,冯奕钰. 有机光伏器件激活层的微结构有序性与电荷输运*[J]. 化学进展, 2006, 18(0203): 182-188.