English
新闻公告
More
化学进展 2015, Vol. 27 Issue (5): 472-481 DOI: 10.7536/PC141035 前一篇   后一篇

• 综述与评价 •

置换反应制备双金属纳米催化剂

焦成鹏1, 黄自力1, 张海军*2, 张少伟2   

  1. 1. 武汉科技大学冶金矿产资源高效利用与造块湖北省重点实验室 武汉 430081;
    2. 武汉科技大学省部共建耐火材料与冶金国家重点实验室 武汉 430081
  • 收稿日期:2014-10-01 修回日期:2015-01-01 出版日期:2015-05-15 发布日期:2015-03-16
  • 通讯作者: 张海军 E-mail:zhanghaijun@wust.edu.cn
  • 基金资助:
    国家自然科学基金项目(No. 51272188, 51472184, 51472185),国家重点基础研究发展计划(973)项目(No. 2014CB660802),湖北省自然科学基金重点项目(No.2013CFA086)和湖北省科技支撑计划对外科技合作项目(No. 2013BHE002)资助

Bimetallic Nanocatalysts Synthesized via Galvanic Replacement Reaction

Jiao Chengpeng1, Huang Zili1, Zhang Haijun*2, Zhang Shaowei2   

  1. 1. Hubei Key Laboratory for Efficient Utilization and Agglomeration of Metallurgical Mineral Resources, Wuhan University of Science and Technology, Wuhan 430081, China;
    2. The State Key Laboratory of Refractories and Metallurgy, Wuhan University of Science and Technology, Wuhan 430081, China
  • Received:2014-10-01 Revised:2015-01-01 Online:2015-05-15 Published:2015-03-16
  • Supported by:
    The work was supported by the National Natural Science Foundation of China (No. 51272188, 51472184, 51472185), the State Basic Research Development Program of China (973 Program)(No. 2014CB660802), the Natural Science Foundation of Hubei Province, China (No. 2013CFA086), and the Foreign Cooperation Projects in Science and Technology of Hubei Province, China (No. 2013BHE002).
双金属纳米颗粒具有比单金属纳米颗粒更加优异的催化、光学及电学等性能,常见的双金属纳米颗粒制备方法有共还原法、连续还原法、电沉积法、微乳液法及置换反应法等.其中,置换反应是一种重要的双金属纳米颗粒制备方法,具有反应条件温和、无需其他还原剂、所制备的纳米颗粒粒径分布均匀、结构可调可控等特点.采用该方法制备的合金结构、核壳结构以及空心结构的双金属纳米颗粒均表现出优异的催化性能,本文综述了近年来置换反应制备不同结构双金属纳米颗粒的研究现状,并且提出了置换反应制备双金属纳米颗粒研究中存在的问题和今后可能的发展方向.
Bimetallic nanoparticles usually have more excellent catalytic, optical and electrical properties than that of corresponding monometallic nanoparticles. Co-reduction, successive reduction, galvanic replacement reaction, chemical vapor deposition, microemulsion and microwave assisted heating method are widely used for the preparation of bimetallic nanoparticles. Alloy, core@shell and hollow-structured bimetallic nanocatalysts with controllable structure and uniform particle size that prepared under mild conditions via galvanic reaction, usually possess highly catalytic activities. Recently development of bimetallic nanoparticles prepared by galvanic replacement reactions with structure of alloy, core@shell and hollow are introduced in present paper, and the effects of preparation condition such as the kind and composition of template nanoparticles, protective agents, reaction medium, reaction time and temperature, precursor concentration on the structure, and the catalytic activity of the as-prepared bimetallic nanoparticles are reviewed in detail. The present problems and potential development directions on bimetallic nanocatalysts with different structures synthesized by replacement reaction are also proposed.

Contents
1 Introduction
1.1 Application and structure of bimetallic nanocatalysts
1.2 Synthesis methods of bimetallic nanocatalysts
1.3 Galvanic replacement reaction
2 Alloy-structured bimetallic nanocatalysts prepared by replacement reaction
2.1 Catalytic property of alloy-structured bimetallic nanocatalysts
2.2 Formation mechanism of alloyed bimetallic nanocatalysts prepared by replacement reaction
2.3 Control synthesis of alloyed bimetallic nanocatalysts by replacement reaction
3 Core@shell-structured bimetallic nanocatalysts prepared by replacement reaction
3.1 Catalytic property of core@shell-structured bimetallic nanocatalysts
3.2 Formation mechanism of core@shell nanocatalysts prepared by replacement reaction
3.3 Control synthesis of core@shell nanocatalysts by replacement reaction
4 Hollow-structured bimetallic nanocatalysts prepared by replacement reaction
4.1 Catalytic property of hollow-structured bimetallic nanocatalysts
4.2 Formation mechanism of hollow nanocatalysts prepared by replacement reaction
4.3 Control synthesis of hollow nanocatalysts by replacement reaction
5 Conclusion and outlook

中图分类号: 

()
[1] 王定胜(Wang D S), 李亚栋(Li Y D). 化学进展(Progress in Chemistry), 2013, 25(1): 1.
[2] 孙学科(Sun X K), 陈上(Chen S), 张兴宏(Zhang X H), 戚国荣(Qi G R). 化学进展(Progress in Chemistry), 2012, 24(9): 1776.
[3] 王小凤(Wang X F), 黄自力 (Huang Z L), 张海军 (Zhang H J). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2013, 42(8) : 1751.
[4] Wilson O M, Scott R W, Garcia-Martinez J C, Crooks R M. J. Am. Chem. Soc., 2005, 127(3): 1015.
[5] Mazumder V, Chi M F, Mankin M N, Liu Y, Metin O, Sun D H, More K L, Sun S H. Nano Lett., 2012, 12: 1102.
[6] Yang Y, Zhang F, Wang H L, Yao Q L, Chen X S, Lu Z H. J. Nanomaterials, 2014, DOI: 10.1155/2014/294350
[7] Liu X W, Liu J Y, He W, Huang Q H, Yang H. J. Colloid Interface Sci., 2010, 344(1): 132.
[8] Byeon J H, Kim Y W. Nanoscale, 2012, 4(21): 6726.
[9] Chen J L, Liu X, Zhang F Z. Chem. Eng. J., 2015, 259: 43.
[10] Singh H P, Gupta N, Sharma S K, Sharma R K. Colloids Surf. A, 2013, 416: 43.
[11] Tsai M C, Yeh T K, Tsai C H. Int. J. Hydrogen Energy, 2011, 36(14): 8261.
[12] Vijayakumar J, Mohan S, Kumar S A, Suseendiran S R, Pavithra S. Int. J. Hydrogen Energy, 2013, 38(25): 10208.
[13] Tsai C H, Yang F L, Chang C H, Yui W C Y. International J. Hydrogen Energy, 2012, 37(9): 7669.
[14] Tendamudzimu R, Kenneth I O, Remegia M M, Charl J J, Mkhulu K M. Electrochim. Acta, 2012, 59: 310.
[15] Zhang X, Zhang G Y, Zhang B D, Su Z H. Langmuir, 2013, 29(22): 6722.
[16] Ghosh T, Satpati B, Senapati D. J. Mater. Chem. C, 2014, 2(13): 2439.
[17] Cobley C M, Xia Y N. Mater. Sci. Eng. R, 2010, 70(3/6): 44.
[18] Zhang H J, Toshima N, Takasaki K, Okumura M. J. Alloys Compd., 2014, 586: 462.
[19] Choi J P, Fields-Zinna C A, Stiles R L, Balasubramanian R, Douglas A D, Crowe M C, Murray R W. J. Phys. Chem. C, 2010, 114: 15890
[20] Wu Z. Angew. Chem. Int. Ed., 2012, 51: 2934.
[21] Liu X W, Wang D S, Li Y D. Nano Today, 2012, 7: 448.
[22] Jo M, Choi Y W, Koo Y M, Kwon S K. Comput. Mater. Sci., 2014, 92: 166.
[23] Sun Y, Mayers B, Xia Y N. Nano Lett., 2002, 2: 481.
[24] Erlebacher J, Aziz M J, Karma A, Dimitrov N, Sieradzki K. Nature, 2001, 410: 450.
[25] Kan C X, Wang C S, Zhu J J, Li H C. J. Solid State Chem., 2010, 183(4): 858.
[26] Kim S M, Kim G S, Lee S Y. Mater. Lett., 2008, 62(28): 4354.
[27] Pastoriza-Santos I, Liz-Marzán L M. Langmuir, 2002, 18(7): 2888.
[28] Mazumder V, Sun S H. J. Am. Chem. Soc., 2009, 131(13): 4588.
[29] Chauhan H, Kumar Y, Deka S. Nanoscale, 2014, 6(17): 10347.
[30] Lucatero S, Podlaha E J. J. Electrochem. Soc., 2010, 157(6): 370.
[31] Ren B, Fan M Q, Liu Q, Wang J, Song D L, Bai X F. Electrochim. Acta, 2013, 92: 197.
[32] (a)Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N. J. Catal., 2013, 305: 7.; (b) Zhang H J, Lu L L, Kawashima K, Okumura M, Haruta M, Toshima N. Adv. Mater., 2014, DOI: 10.1002/adma.201404870
[33] Zhang H J, Watanabe T, Okumura M, Haruta M, Toshima N. Nat. Mater., 2012, 11: 49.
[34] Pearson A, O'Mullane A P, Bhargava S K, Bansal V. Electrochem. Commun., 2012, 25: 87.
[35] Tang S C, Vongehr S, Zheng Z, Meng X K. J. Colloid Interface Sci., 2010, 351(1): 217.
[36] Liu X Y, Wang A Q, Li L, Zhang T, Mou C Y, Lee J F. Prog. Nat. Sci., 2013, 23(3): 317.
[37] Yi Z, Chen S J, Chen Y, Luo J S, Wu W D, Yi Y G, Tang Y J. Thin Solid Films, 2012, 520(7): 2701.
[38] Mintsouli I, Georgieva J, Armyanov S, Valova E, Avdeev G, Hubin A, Steenhaut O, Dille J, Tsiplakides D, Balomenou S, Sotiropoulos S. Appl. Catal. B, 2013, 136/137: 160.
[39] Coleman E J, Co A C. J. Catal., 2014, 316: 191.
[40] Li Y H, Zhang Q, Zhang N W, Zhu L H, Zheng J B, Chen B H. International J. Hydrogen Energy, 2013, 38(30): 13360.
[41] You D J, Jin S, Lee K H, Pak C, Choi K H, Chang H. Catal. Today, 2012, 185(1): 138.
[42] Lu Y Z, Jiang Y Y, Chen W. Nano Energy, 2013, 2(5): 836.
[43] Wang C N, Fang J H, Jin Y L. Spectrochimica Acta Part A, 2012, 96: 820.
[44] 王锐(Wang R), 訾学红(Zi X H), 刘立成(Liu L C), 戴洪兴(Dai H X), 何 洪(He H). 化学进展(Progress in Chemistry), 2010, 22(2/3): 358.
[45] Chatterjee K, Sarkar S, Rao K J, Paria S. Adv. Colloid Interface Sci., 2014, 209: 8.
[46] Li S Y, Wang M. Mater. Lett., 2013, 92: 350.
[47] Li C L, Su Y, Lv X Y, Zuo Y Y, Yang X G, Wang Y J. Sensors and Actuators B: Chemical, 2012, 171/172: 1192.
[48] Thatai S, Khurana P, Boken J, Prasad S, Kumar D. Microchem. J., 2014, 116: 62.
[49] Byeon J H, Kim Y W. Nanoscale, 2012, 4(21): 6726.
[50] Zihlmann S, Lüönd F, Spiegel J K. J. Aerosol Sci., 2014, 75: 81.
[51] Du C, Su J, Luo W, Cheng G Z. J. Mol. Catal. A, 2014, 383/384: 38.
[52] Cao N, Su J, Luo W, Cheng G Z. Catal. Commun., 2014, 43: 47.
[53] Wojtysiak S, Solla-Gulón J, Dtu ? ewski P, Kudelski A. Colloids Surf. A, 2014, 441: 178.
[54] Reyes-Rodríguez J L, Leyva M A, Solorza-Feria O. International J. Hydrogen Energy, 2013, 38(28): 12634.
[55] Yang J, Lee J, Too H. J. Phys. Chem. B, 2005, 109: 19208
[56] Zhang Q B, Xie J P, Lee J Y, Zhang J X, Hroyd C B. Small, 2008, 4(8): 1067.
[57] Mott D M, Anh D T N, Singh P, Shankar C, Maenosono S. Adv. Colloid Interface Sci., 2012, 185/186: 14.
[58] Skrabalak S E, Chen J, Sun Y, Lu X, Au L, Cobley C M, Xia Y N. Acc. Chem. Res., 2008, 41: 1587
[59] Gong X, Yang Y, Huang S. J. Phys. Chem. C, 2010, 114: 18073
[60] Ban Z H, Barnakov Y A, Li F, Golub V O, O'Connor C J. J. Mater. Chem., 2005, 15: 4660.
[61] Sieben J M, Comignani V, Alvarez A E, Duarte M M E. International J. Hydrogen Energy, 2014, 39(16): 8667.
[62] Reyes-Rodríguez J L, Godínez-Salomón F, Leyva M A, Solorza-Feria O. International J. Hydrogen Energy, 2013, 38(28): 12634.
[63] Du C Y, Chen M, Wang W G, Tan Q, Xiong K, Yin G P. J. Power Sources, 2013, 240: 630.
[64] Sun Y, Xia Y N. J. Am. Chem. Soc., 2004, 126: 3892.
[65] Gilroy K D, Farzinpour P, Sundar A, Tan T, Hughes R A, Neretina S. Nano Res., 2013, 6(6): 418.
[66] Tsuji M, Hamasaki M, Yajima A, Hattori M, Tsuji T, Kawazumi H. Materials Lett., 2014, 121: 113.
[67] Kim M R, Lee D K, Jang D J. Appl. Catal. B, 2011, 103: 253.
[68] Hu Y J, Wu P, Zhang H, Cai C X. Electrochim. Acta, 2012, 85: 314.
[1] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[2] 王杰, 冯亚青, 张宝. MOF-COF框架杂化材料[J]. 化学进展, 2022, 34(6): 1308-1320.
[3] 邵秀丽, 王驷骐, 张轩, 李军, 王宁宁, 王政, 袁忠勇. 纳米片层结构MFI分子筛的合成及应用[J]. 化学进展, 2022, 34(12): 2651-2666.
[4] 徐梦婷, 王彦青, 毛亚, 李景娟, 江志东, 原鲜霞. 非水系锂空气电池催化剂[J]. 化学进展, 2021, 33(10): 1679-1692.
[5] 刘风国, 王博, 章莲玉, 刘爱民, 王兆文, 石忠宁. 离子液体在电沉积铝及铝合金中的应用[J]. 化学进展, 2020, 32(12): 2004-2012.
[6] 周中高, 元洋洋, 徐国海, 陈正旺, 李梅. 糖基氮杂环卡宾及其过渡金属配合物的合成与催化性能[J]. 化学进展, 2019, 31(2/3): 351-367.
[7] 李振杰, 钟杜, 张洁, 陈金伟, 王刚, 王瑞林. 锂离子电池硅纳米粒子/碳复合材料[J]. 化学进展, 2019, 31(1): 201-209.
[8] 康永印, 宋志成, 乔培胜, 杜向鹏, 赵飞. 光致发光胶体量子点研究及应用[J]. 化学进展, 2017, 29(5): 467-475.
[9] 袁世芳, 王丽静, 张秋月, 孙文华. 三齿配位钛配合物催化烯烃聚合[J]. 化学进展, 2017, 29(12): 1462-1470.
[10] 张东杰, 张丛筠, 卢亚, 郝耀武, 刘亚青. 种子生长法制备Au@Ag核壳纳米粒子[J]. 化学进展, 2015, 27(8): 1057-1064.
[11] 陈思远, 董旭, 查刘生. 表面引发原子转移自由基聚合法合成无机/有机核壳复合纳米粒子[J]. 化学进展, 2015, 27(7): 831-840.
[12] 郭艳, 彭波, 张春雨, 张学全. 聚丙烯釜内合金的相态研究[J]. 化学进展, 2015, 27(12): 1815-1821.
[13] 何菡娜, 王海燕, 唐有根, 刘又年. 钠离子电池负极材料[J]. 化学进展, 2014, 26(04): 572-581.
[14] 宋肖锴, 周雅静, 李亮. 核壳结构金属-有机骨架的研究[J]. 化学进展, 2014, 26(0203): 424-435.
[15] 张卫红, 黄怡, 田威. 聚合物基空心微球的制备方法及应用[J]. 化学进展, 2013, 25(11): 1951-1961.
阅读次数
全文


摘要

置换反应制备双金属纳米催化剂