English
新闻公告
More
化学进展 2015, Vol. 27 Issue (4): 336-348 DOI: 10.7536/PC141010 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评价 •

锂离子电池SiOx(0<x≤2)基负极材料

刘欣1, 赵海雷*1,3, 解晶莹*2,4, 吕鹏鹏1, 王可2, 崔佳佳4   

  1. 1. 北京科技大学材料科学与工程学院 北京 100083;
    2. 上海空间电源研究所 上海 200245;
    3. 新能源材料与技术北京市重点实验室 北京 100083;
    4. 上海动力与储能电池系统工程中心 上海 200245
  • 收稿日期:2014-10-01 修回日期:2014-12-01 出版日期:2015-04-15 发布日期:2015-02-04
  • 通讯作者: 赵海雷, 解晶莹 E-mail:hlzhao@ustb.edu.cn;xiejingying2007@126.com
  • 基金资助:
    国家重点基础研究发展计划(973)项目(No. 2013CB934003),国家自然科学基金项目(No. 21273019),国家高技术研究发展计划(863)项目(No. 2013AA050902),上海市科技人才计划项目(No. 12XD1421900)和上海市科委科技创新项目(No.12dz1200503, 13dz2280200)资助

SiOx(0<x≤2) Based Anode Materials for Lithium-Ion Batteries

Liu Xin1, Zhao Hailei*1,3, Xie Jingying*2,4, Lv Pengpeng1, Wang Ke2, Cui Jiajia4   

  1. 1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Shanghai Institute of Space Power Sources, Shanghai 200245, China;
    3. Beijing Key Lab of New Energy Materials and Technology, Beijing 100083, China;
    4. Shanghai Engineering Center for Power and Energy Storage Systems, Shanghai 200245, China
  • Received:2014-10-01 Revised:2014-12-01 Online:2015-04-15 Published:2015-02-04
  • Supported by:
    The work was supported by the National Key Basic Research Program of China (973 Program)(No. 2013CB934003), the National Natural Science Foundation of China (No. 21273019), the National High Technology Research and Development Program of China (863 Program)(No. 2013AA050902) , the Shanghai Science and Technology Talent Project Funds (No.12XD1421900), and the Shanghai Science and Technology Development Funds (No. 12dz1200503,13dz2280200).
随着锂离子电池向电动汽车、可再生能源储能系统等大型应用领域发展,锂离子电池的能量密度、功率密度等性能指标需要进一步提高。在负极材料方面,传统的石墨碳负极材料的比容量有限,已经难以满足高能量密度电池的需求。以Si基材料为代表的新型高比容量负极材料受到了人们的广泛关注。其中,SiOx材料在发挥高比容量的同时,具有相比纯Si更小的体积变化,因而在循环寿命方面更具实用潜力。本文对目前报道的SiOx基负极材料的研究工作进行总结,系统阐述了SiOx材料的基本电化学性能、结构模型、电化学机理及合成方法,分类介绍了改进SiOx材料电化学性能的各类措施,并对其中SiO及无定形SiO2材料进行了重点论述。研究表明,氧含量、歧化程度、表面状态等对SiOx材料的电化学性能具有重要影响;界面团簇混合(ICM)结构模型可更好地对其电化学机理进行理解;通过与第二相(碳、金属、金属氧化物等)复合,造孔,表面改性(包覆、刻蚀等)及其他手段(改变粘结剂及电解液)可有效提升SiOx基材料的首次库仑效率和循环性能;部分使用SiOx基材料的全电池具有循环600次后容量保持率达90%的优秀循环性能。SiOx基材料已成为一种在高比能量锂离子电池中极具应用潜力的负极材料。
With rapidly growing application of lithium-ion batteries in electric vehicles and renewable energy storage, there is an increasing demand on high performance batteries in terms of energy density and power density. For anode materials, the traditional graphitized carbon materials cannot meet these requirements, novel high-capacity anode materials are being widely investigated, including Si-based materials. Among them, SiOx is considered to be a promising anode material for the practical use because it can deliver a high capacity and at the same time produce relatively lower volume change upon cycling compared to pure silicon. This paper summarizes the published works on SiOx-based anode materials. The basic electrochemical performance, structure model, electrochemical reaction mechanism and synthesis methods of SiOx powders are systematically reviewed. Methods used to improve electrochemical performance are classified and introduced, emphasized on those of SiO and amorphous SiO2. These works suggested that the oxygen content, disproportionation level and surface state of SiOx have significant influence on the electrochemical performance of SiOx. The interface clusters mixture (ICM) structural model can be used to better understand the nature of the electrochemical reaction processes of SiOx. Introduction of second phase (carbon, metals, metal oxides, etc.), preparation of porous structure, surface modification and optimization of binder and electrolyte are proved to be effective methods to improve the coulombic efficiency and cycling performance of SiOx electrode. Batteries with optimized SiOx-based material showed good cycling stability with 90% capacity retention after 600 cycles. SiOx-based composite is one of the best promising anode materials for lithium-ion batteries with high energy density.

Contents
1 Introduction
2 Properties of SiOx material
2.1 Basic electrochemical performance
2.2 Structure
2.3 Mechanism of the electrochemical process
2.4 Synthesis methods
3 SiOx-based materials
3.1 Compositing with second phase
3.2 Porous structured SiOx
3.3 Surface modification
3.4 Other factors and issues
4 Conclusion and outlook

中图分类号: 

()
[1] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135: 1167.
[2] Li Y, Song J, Yang J. Renew. Sust. Energ. Rev., 2014, 37: 627.
[3] Zhang W J. J. Power Sources, 2011, 196: 13.
[4] Park C M, Kim J H, Kim H, Sohn H J. Chem. Soc. Rev., 2010, 39: 3115.
[5] Zamfir M R, Nguyen H T, Moyen E, Lee Y H, Pribat D. J. Mater. Chem. A, 2013, 1: 9566.
[6] McDowell M T, Ryu I, Lee S W, Wang C, Nix W D, Cui Y. Adv. Mater., 2012, 24: 6034.
[7] Hovington P, Dontigny M, Guerfi A, Trottier J, Lagace M, Mauger A, Julien C M, Zaghib K. J. Power Sources, 2014, 248: 457.
[8] Zhou X, Yin Y X, Wan L J, Guo Y G. Chem. Commun., 2012, 48: 2198.
[9] Wu H, Cui Y. Nano Today, 2012, 7: 414.
[10] Liang B, Liu Y, Xu Y. J. Power Sources, 2014, 267: 469.
[11] Szczech J R, Jin S. Energy Environ. Sci., 2011, 4: 56.
[12] [2014-09-01].http://china.nikkeibp.com.cn/news/elec/51881-20100611.html.
[13] [2014-09-01].http://china.nikkeibp.com.cn/news/elec/68165-20131022.html?ref=ML.
[14] 全威 (Quan W). 内蒙古科技与经济 (Inner Mongolia Science Technology & Economy), 2013, 283: 86.
[15] 文钟晟 (Wen Z C), 王可 (Wang K), 解晶莹 (Xie J Y), 杨军 (Yang J). 电源技术 (Chinese Journal of Power Sources), 2004, 28: 719.
[16] Idota Y, Mineo Y, Matsufuji A, Miyasaki T. Denki Kagaku oyobi Kogyo Butsuri Kagaku, 1997, 65: 717.
[17] 福冈宏问(Fukuoka H), 荒又干夫(Aramata M), 宫脇悟(Miyawaki S). CN 101139095-A, 2008.
[18] 木崎信吾(Kizaki S). CN 102460784-A, 2012.
[19] 金德炫(Kim D H), 金载明(Kim J M), 朱圭湳(Joo K N), 金泰植(Joo K N). CN 103094538-A, 2013.
[20] Yang J, Takeda Y, Imanishi N, Capiglia C, Xie J Y, Yamamoto O. Solid State Ionics, 2002, 152/153: 125.
[21] Kim M K, Jang B Y, Lee J S, Kim J S, Nahm S. J. Power Sources, 2013, 244: 115.
[22] Takezawa H, Iwamoto K, Ito S, Yoshizawa H. J. Power Sources, 2013, 244: 149.
[24] Kim J H, Park C M, Kim H, Kim Y J, Sohn H J. J. Electroanal. Chem., 2011, 661: 245.
[25] Santos-Pena J, Sanchez L, Cruz-Yusta M. Appl. Phys. Lett., 2006, 89: 093125.
[26] 梁英 (Liang Y), 张勇 (Zhang Y), 田志高 (Tian Z G), 贾志杰 (Jia Z J). 电源技术 (Chinese Journal of Power Sources), 2008, 32: 841.
[27] Hasanaly S M, Mat A, Sulaiman K S. Ionics, 2005, 11: 393.
[28] Yang Y, Peng W J, Guo H J, Wang Z X, Li X H, Zhou Y Y, Liu Y J. Trans. Nonferrous Met. Soc. China, 2007, 17: 1339.
[29] Omanda H, Brousse T, Marhic C, Schleich D M. J. Electrochem. Soc., 2004, 151: A922.
[30] Gao B, Sinha S, Fleming L, Zhou O. Adv. Mater., 2001, 13: 816.
[31] Sun Q, Zhang B, Fu Z W. Appl. Sur. Sci., 2008, 254: 3774.
[32] Sasidharan M, Liu D, Gunawardhana N, Yoshio M, Nakashima K. J. Mater. Chem., 2011, 21: 13881.
[33] Yan N, Wang F, Zhong H, Li Y, Wang Y, Hu L, Chen Q. Sci. Rep., 2013, 3: 1568.
[34] Guo B, Shu J, Wang Z, Yang H, Shi L, Liu Y, Chen L. Electrochem. Commun., 2008, 10: 1876.
[35] Yao Y, Zhang J, Xue L, Huang T, Yu A. J. Power Sources, 2011, 196: 10240.
[36] Lv P, Zhao H, Wang J, Liu X, Zhang T, Xia Q. J. Power Sources, 2013, 237: 291.
[37] Yamamura H, Nobuhara K, Nakanishi S, Iba H, Okada S. J. Ceram. Soc. Jpn., 2011, 119: 855.
[38] Chang W S, Park C M, Kim J H, Kim U Y, Jeong G, Sohn H J. Energy Environ. Sci., 2012, 5: 6895.
[39] Temkin R J. J. Non-Cryst. Solids, 1975, 17: 215.
[40] Brady G W. J. Phys. Chem. , 1959, 63: 1119.
[41] Nagao Y, Sakaguchi H, Honda H, Fukunaga T, Esaka T. J. Electrochem. Soc., 2004, 151: 1572.
[42] Friede B, Jansen M. J. Non-Cryst. Solids, 1996, 204: 202.
[43] Sepehri-Amin H, Ohkubo T, Kodzuka M, Yamamura H, Saito T, Iba H, Hono K. Scr. Mater., 2013, 69: 92.
[44] Nakamura M, Mochizuki Y, Usami K, Itoh Y, Nozaki T. Solid State Commun., 1984, 50: 1079.
[45] Senemaud C, Costa-Lima M T, Roger J A, Cachard A. Chem. Phys. Lett., 1974, 26: 431.
[46] Hohl A, Wieder T, Aken P A, Weirich T E, Denninger G, Vidal M, Oswald S, Deneke C, Mayer J, Fuess H. J. Non-Cryst. Solids, 2003, 320: 255.
[47] Schulmeister K, Mader W. J. Non-Cryst. Solids, 2003, 320: 143.
[48] Morita T, Takami Norio. J. Electrochem. Soc., 2006, 153: 425.
[49] Miyuki T, Okuyama Y, Sakamoto T, Eda Yusuke, Kojima T, Sakai T. Electrochemistry, 2012, 80: 401.
[50] Park C M, Choi W, Hwa Y, Kim J H, Jeong G, Sohn H J. J. Mater. Chem., 2010, 20: 4854.
[51] Hwa Y, Park C M, Sohn H J. J. Power Sources, 2013, 222: 129.
[52] Yu B C, Hwa Y, Kim J H, Sohn H J. Electrochim. Acta, 2014, 117: 426.
[53] 木崎信吾(Kizaki S), 菅野英明(Kanno H). CN 102484248-A, 2012.
[54] 菅野英明(Kanno H), 木崎信吾(Kizaki S). CN 102576868-A, 2012.
[55] Kim K, Park J H, Doo S G, Kim T. Thin Solid Films, 2010, 518: 6547.
[56] Homma K, Kambara M, Yoshida T. Sci. Technol. Adv. Mater., 2014, 15: 025006.
[57] Nagao Y, Sakaguchi H, Honda H, Fukunaga T, Esaka T. J. Electrochem. Soc., 2004, 151: A1572.
[58] Yu B C, Hwa Y, Kim J H, Sohn H J. Electrochim. Acta, 2014, 117: 426.
[59] Miyachi M, Yamamoto H, Kawai H, Ohta T, Shirakata M. J. Electrochem. Soc., 2005, 152: A2089.
[60] Miyachi M, Yamamoto H, Kawai H. J. Electrochem. Soc., 2007, 154: A376.
[61] Yamada Y, Iriyama Y, Abe T, Ogumi Z. J. Electrochem. Soc., 2010, 157: A26.
[62] Lee K J, Yoon W Y, Kim B K. J. Electrochem. Soc., 2014, 161: A927.
[63] Ban C, Kappes B B, Xu Q, Engtrakul C, Ciobanu C V, Dillon A C, Zhao Y. Appl. Phys. Lett., 2012, 100: 243905.
[64] Winter M, Wrodnigg G H, Besenhard J O, Biberacher W, Novák P. J. Electrochem. Soc., 2000, 147: 2427.
[65] Terranova M L, Orlanducci S, Tamburri E, Guglie-Jmotti V, Rossi M. J. Power Sources, 2014, 246: 167.
[66] Wang J, Zhao H, He J, Wang C, Wang J. J. Power Sources, 2011, 196: 4811.
[67] Park M S, Park E, Lee J, Jeong G, Kim K J, Kim J H, Kim Y J, Kim H. ACS Appl. Mater. Interfaces, 2014, 6: 9608.
[68] Guo C, Wang D, Liu T, Zhu J, Lang X. J. Mater. Chem. A, 2014, 2: 3521.
[69] Jung M J, Sheem K Y, Lee Y S. J. Nanosci. Nanotechnol., 2014, 14: 2852.
[70] Nguyen D T, Nguyen C C, Kim J S, Kim J Y, Song S W. ACS Appl. Mater. Interfaces, 2013, 5: 11234.
[71] Kim J H, Sohn H J, Kim H, Jeong G, Choi W. J. Power Sources, 2007, 170: 456.
[72] Kobayashi Y, Seki S, Mita Y, Ohno Y, Miyashiro H, Charest P, Guerfi A, Zaghib K. J. Power Sources, 2008, 185: 542.
[73] 任玉荣 (Ren Y R), 瞿美臻 (Qu M Z), 于作龙 (Yu Z L). 中国科学 B辑: 化学 (Science China Chemistry), 2009, 39: 1593.
[74] Liu W R, Yen Y C, Wu H C, Winter M, Wu N L. J. Appl. Electrochem., 2009, 39: 1643.
[75] Lu Z, Zhang L, Liu X. J. Power Sources, 2010, 195: 4304.
[76] Si Q, Hanai K, Ichikawa T, Phillipps M B, Hirano A, Imanishi N, Yamamoto O, Takeda Y. J. Power Sources, 2011, 196: 9774.
[77] Choi I, Lee M J, Oh S M, Kim J J. Electrochim. Acta, 2012, 85: 369.
[78] Ren Y, Ding J, Yuan N, Jia S, Qu M, Yu Z. J. Solid State Electrochem., 2012, 16: 1453.
[79] Guo C, Wang D, Wang Q, Wang B, Liu T. Int. J. Electrochem. Sci., 2012, 7: 8745.
[80] Lee D J, Ryou M H, Lee J N, Kim B G, Lee Y M, Kim H W, Kong B S, Park J K, Choi J W. Electrochem. Commun., 2013, 34: 98.
[81] 王洁 (Wang J), 侯贤华 (Hou X H), 李敏 (Li M), 张苗(Zhang M), 胡社军 (Hu S J). 电池工业 (Chinese Battery Industry), 2013, 18: 147.
[82] Cheon J H, Jang B Y, Kim J S, Lee J S. J. Korean Phys. Soc., 2013, 62: 1119.
[83] Doh C H, Park C W, Shin H M, Kim D H, Chung Y D, Moon S I, Jin B S, Kim H S, Veluchamy A. J. Power Sources, 2008, 179: 367.
[84] Doh C H, Shin H M, Kim D H, Ha Y C, Jin B S, Kim H S, Moon S I, Veluchamy A. Electrochem. Commun., 2008, 10: 233.
[85] Yuge R, Toda A, Fukatsu K, Tamura N, Manako T, Nakahara K, Nakano K. J. Electrochem. Soc., 2013, 160: A1789.
[86] Chao Y J, Yuan X, Ma Z F. Electrochim. Acta, 2008, 53: 3468.
[87] Yamada M, Ueda A, Matsumoto K, Ohzuku T. J. Electrochem. Soc., 2011, 158: A417.
[88] 余德馨 (Yu D X), 杨学林 (Yang X L), 石长川 (Shi C C), 张鹏昌 (Zhang P C). 三峡大学学报(自然科学版)(Journal of China Three Gorges Univeristy (Natural Sciences)), 2011, 33: 80.
[89] 石长川 (Shi C C), 杨学林 (Yang X L), 张露露 (Zhang L L), 周永涛 (Zhou Y T), 温兆银 (Wen Z Y). 无机材料学报 (Journal of Inorganic Materials), 2013, 28: 943.
[90] Kim K W, Park H, Lee J G, Kim J, Kim Y U, Ryu J H, Kim J J, Oh S M. Electrochim. Acta, 2013, 103: 226.
[91] Prak J, Park S S, Won Y S. Electrochim. Acta, 2013, 107: 467.
[92] Yamada M, Uchitomi K, Ueda A, Matsumoto K, Ohzuku T. J. Power Sources, 2013, 225: 221.
[93] Kajita T, Yuge R, Nakahara K, Iriyama J, Takahashi H, Kasahara R, Numata T, Serizawa S, Utsugi K. J. Electrochem. Soc., 2013, 160: A1806.
[94] Kajita T, Yuge R, Nakahara K, Iriyama J, Takahashi H, Kasahara R, Numata T, Serizawa S, Utsugi K. J. Electrochem. Soc., 2014, 161: A708.
[95] Miyuki T, Okuyama Y, Kojima T, Sakai T. Electrochemistry, 2012, 80: 405.
[96] Yang X, Wen Z, Xu X, Lin B, Huang S. J. Power Sources, 2007, 164: 880.
[97] Yang X, Wen Z, Zhang L, You M. J. Alloys Compds., 2008, 464: 265.
[98] Wang X, Wen Z, Liu Y, Wu X. Electrochim. Acta, 2009, 54: 4662.
[99] Wang X, Wen Z, Liu Y, Huang Y, Wen T L. Solid State Ionics, 2011, 192: 330.
[100] Seong I W, Kim K T, Yoon W Y. J. Power Sources, 2009, 189: 511.
[101] Feng X, Yang J, Yu X, Wang J, Nuli Y. J. Solid State Electrochem. 2013, 17: 2461.
[102] Lee H Y, Lee S M. Electrochem. Commun., 2004, 6: 465.
[103] Jeong G J, Kim Y U, Krachkovskiy S A, Lee C K. Chem. Mater., 2010, 22: 5570.
[104] Morimoto H, Tatsumisago M, Minami T. Electrochem. Solid-State Lett., 2001, 4: A16.
[105] 黄可龙 (Huang K L), 赵薇 (Zhao W), 刘素琴 (Liu S Q). 无机化学学报 (Chinese Journal of Inorganic Chemistry), 2007, 23: 1644.
[106] Jeong G, Kim J H, Kim Y U, Kim Y J. J. Mater. Chem., 2012, 22: 7999.
[107] Yamamura H, Nakanishi S, Iba H. J. Power Sources, 2013, 232: 264.
[108] Morimoto H, Sudo T, Wantnabe H, Tobishima S I. Electrochemistry, 2012, 80: 812.
[109] Zhou M, Gordin M L, Chen S, Xu T, Song J, Lv D, Wang D. Electrochem. Communs., 2013, 28: 79.
[110] Veluchamy A, Doh C H, Kim D H, Lee J H, Lee D J, Ha K H, Shin H M, Jin B S, Kim H S, Moon S I, Park C W. J. Power Sources, 2009, 188: 574.
[111] Zhang L, Deng J, Liu L, Si W, Oswald S, Xi L, Kundu M, Ma G, Gemming T, Baunack S, Ding F, Yan C, Schmidt O G. Adv. Mater., 2014, 26: 4527.
[112] Liu B, Abouimrane A, Ren Y, Balasubramanian M, Wang D, Fang Z Z, Amine K. Chem. Mater., 2012, 24: 4653.
[113] Liu B, Abouimrane A, Brown D E, Zhang X, Ren Y, Fang Z Z, Amine K. J. Mater. Chem. A, 2013, 1: 4376.
[114] Liu B, Abouimrane A, Ren Y, Neuefeind J, Fang Z Z, Amine K. J. Electrochem. Soc., 2013, 160: A882.
[115] Ferguson P P, Martine M L, George A E, Dahn J R. J. Power Sources, 2000, 194: 794.
[116] Liu Y, Yang J, Imanishi N, Hirano A, Takeda Y, Yamamoto O. J. Power Sources, 2005, 146: 376.
[117] Doh C H, Veluchamy A, Lee D J, Lee H J, Jin B S, Moon S I, Park C W, Kim D W. Bull. Korean Chem. Soc., 2010, 31: 1257.
[118] 陈丽 (Chen L), 张宁 (Zhang N), 高立军 (Gao L J). 南昌大学学报(理科版) (Journal of Nanchang University (Natural Science)), 2011, 35: 228.
[119] Zhang T, Gao J, Zhang H P, Yang L C, Wu Y P, Wu H Q. Electrochem. Commun., 2007, 9: 886.
[120] Lee J I, Lee K T, Cho J, Kim J, Choi N S, Park S. Angew. Chem., 2012, 124: 2821.
[121] Lee J I, Park S. Nano Energy, 2013, 2: 146.
[122] Xing A, Zhang J, Bao Z, Mei Y, Gordin A S, Sandhage K H. Chem. Commun., 2013, 46: 6743.
[123] Feng X, Yang J, Lu Q, Wang J, Nuli Y. Phys. Chem. Chem. Phys., 2013, 15: 14420.
[124] Hwang S W, Lee K J, Yoon W Y. J. Power Sources, 2013, 244: 620.
[125] Guerfi A, Charest P, Dontigny M, Trottier J, Lagace M, Hovington P, Vijh A, Zaghib K. J. Power Sources, 2011, 196: 5667.
[126] Komaba S, Shimomura K, Yabuuchi N, Ozeki T, Yui H, Konno K. J. Phys. Chem. C, 2011, 115: 13487.
[127] 刘欣 (Liu X), 赵海雷 (Zhao H L), 解晶莹 (Xie J Y), 汤卫平 (Tang W P), 潘延林 (Pan Y L), 丰震河 (Feng Z H). 化学进展 (Progress in Chemistry), 2013, 25: 1401.
[128] Nguyen C C, Choi H, Song S W. J. Electrochem. Soc., 2013, 160: A906.
[129] Song J W, Nguyen C C, Song S W. RSC Adv., 2012, 2: 2003.
[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[9] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[10] 耿莹, 张默贺, 付锦, 周瑞莎, 宋江锋. MOF-74及其复合物:多样合成与广泛应用[J]. 化学进展, 2021, 33(12): 2283-2307.
[11] 郑超, 戴一仲, 陈铃峰, 李明光, 陈润锋, 黄维. 敏化型电致发光器件原理与技术[J]. 化学进展, 2020, 32(9): 1352-1367.
[12] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[13] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[14] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[15] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
阅读次数
全文


摘要

锂离子电池SiOx(0<x≤2)基负极材料