English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 297-309 DOI: 10.7536/PC140932 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池铌基氧化物负极材料

娄帅锋1, 程新群1, 马玉林1, 杜春雨1, 高云智1, 尹鸽平*1,2   

  1. 1. 哈尔滨工业大学化工学院特种化学电源研究所 哈尔滨 150001;
    2. 哈尔滨工业大学城市水资源与水环境国家重点实验室 哈尔滨 150001
  • 收稿日期:2014-09-01 修回日期:2014-11-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 尹鸽平 E-mail:yingphit@hit.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51472065)资助

Nb-Based Oxides as Anode Materials for Lithium Ion Batteries

Lou Shuaifeng1, Cheng Xinqun1, Ma Yulin1, Du Chunyu1, Gao Yunzhi1, Yin Geping*1,2   

  1. 1. Institute of Advanced Power Sources, School of Chemical Engineering & Technology, Harbin Institute of Technology, Harbin 150001, China;
    2. State Key Laboratory of Urban Water Resource and Environment, Harbin Institute of Technology, Harbin 150001, China
  • Received:2014-09-01 Revised:2014-11-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51472065).

锂离子电池负极材料钛酸锂由于其高功率和优异的循环性能得到了广泛的研究,但是较低的比容量(175 mAh/g)限制了其应用前景。与钛酸锂相比,铌基氧化物具有相似的嵌脱锂电位和更高的比容量,也展现出良好的倍率性能和循环性能,有望成为新型功率型负极材料。本文综述了多种铌基复合金属氧化物(Nb2O5,TiNb2O7,LiNb3O8等)的晶体结构、电化学性能和嵌脱锂机理,讨论了材料的组成、形貌和制备工艺等对其嵌脱锂性能的影响,并概述其作用机制。此外,本文还归纳总结了铌基材料嵌脱锂行为的共性,并比较了它们与钛酸锂的异同,对其作为高功率锂离子电池负极材料的研究趋势和发展前景进行了展望。

Li4Ti5O12 as anode materials for lithium ion batteries has been widely studied because of its excellent rate performance and cycle performance, but the low specific capacity (175 mAh/g) limits its application in the future. Compared with Li4Ti5O12, niobium based oxides have similar lithium ion insertion/extraction potential and higher specific capacity. In addition,they also have good rate performance and promising to be new anode materials with high power performance, that have got increasing researchers' attention in recent years. In this paper,the crystal structure, electrochemical performance and lithium ion insertion/extraction mechanism of various niobium based oxides materials (Nb2O5, TiNb2O7, LiNb3O8, etc.) are reviewed. The effects on lithium ion transfer and storage performance originate from component, particle morphology and preparation technology are discussed. Meanwhile, the influencing mechanism is also summarized. In addition, the generality in electrochemical lithium insertion and extraction behavior of niobium based oxides materials, the differences and similarities compared with Li4Ti5O12 are summarized the tendency and prospect of them as anode materials for high power lithium ion batteries in the end are also discussed.

Contents
1 Introduction
2 Research status of Nb-based oxides anode materials for lithium ion battery
2.1 Niobium oxides
2.2 Titanium niobium oxides
2.3 Lithium niobium oxides
2.4 Potassium niobium oxides
2.5 Vanadium niobium oxides
2.6 Other niobium based oxides
3 Understand of intercalation and deintercalation of lithium ion for niobium based oxide
4 Summary

中图分类号: 

()

[1] Tarascon J M, Armand M. Nature, 2001, 414: 359.
[2] Li H, Wang Z, Chen L, Huang X. Adv. Mater., 2009, 21: 4593.
[3] Lu X, Zhao L, He X, Xiao R, Gu L, Hu Y S, Li H, Wang Z, Duan X,Chen L. Adv. Mater., 2012, 24: 3233.
[4] Fang W, Cheng X, Zuo P, Ma Y, Yin G. Electrochim. Acta, 2013, 93: 173.
[5] Wang Y Q, Gu L, Guo Y G, Li H, He X Q, Tsukimoto S, Ikuhara Y, Wan L J. J. Am. Chem. Soc., 2012, 134: 7874.
[6] Fang W, Zuo P, Ma Y, Cheng X, Liao L, Yin G. Electrochim. Acta, 2013, 94: 294.
[7] Han J T, Huang Y H, Goodenough J B. Chem. Mater., 2011, 23: 2027.
[8] Han J T, Liu D Q, Song S H, Kim Y, Goodenough J B. Chem. Mater., 2009, 21: 4753.
[9] Han J T, Goodenough J B. Chem. Mater., 2011, 23: 3404.
[10] Goodenough J B, Kim Y. J. Power Sources, 2011, 196: 6688.
[11] Goodenough J B. Acc. Chem. Res., 2012, 46: 1053.
[12] Li Y, Sun C, Goodenough J B. Chem. Mater., 2011, 23: 2292.
[13] Goodenough J B, Han J T. US 8647773. 2014.
[14] Tang K, Mu X, van Aken P A, Yu Y, Maier J. Adv. Energy Mater., 2013, 3: 49.
[15] Lu X, Jian Z, Fang Z, Gu L, Hu Y S, Chen W, Wang Z, Chen L. Energy Environ. Sci., 2011, 4: 2638.
[16] Pralong V, Reddy M A, Caignaert V, Malo S, Lebedev O, Varadaraju U, Raveau B. Chem. Mater., 2011, 23: 1915.
[17] Jian Z, Lu X, Fang Z, Hu Y S, Zhou J, Chen W, Chen L. Electrochem. Commun., 2011, 13: 1127.
[18] Sasidharan M, Gunawardhana N, Yoshio M, Nakashima K. Mater. Res. Bull., 2012, 47: 2161.
[19] Wu X, Miao J, Han W, Hu Y S, Chen D, Lee J S, Kim J, Chen L. Electrochem. Commun., 2012, 25: 39.
[20] Saritha D, Varadaraju U. Mater. Res. Bull., 2013, 48: 2702.
[21] Goodenough J B, Kim Y. Chem. Mater., 2009, 22: 587.
[22] Yan C, Xue D. Adv. Mater., 2008, 20: 1055.
[23] Cui H, Dwight K, Soled S, Wold A. J. Solid State Chem., 1995, 115: 187.
[24] Furukawa S, Ohno Y, Shishido T, Teramura K, Tanaka T. ACS Catal., 2011, 1: 1150.
[25] Kavan L, Kalbac M, Zukalová M, Exnar I, Lorenzen V, Nesper R, Graetzel M. Chem. Mater., 2004, 16: 477.
[26] Viet A L, Reddy M, Jose R, Chowdari B, Ramakrishna S. J. Phys. Chem. C, 2009, 114: 664.
[27] Gatehouse B, Wadsley A. Acta Crystallogr., 1964, 17: 1545.
[28] Kumagai N, Koishikawa Y, Komaba S, Koshiba N. J. Electrochem. Soc., 1999, 146: 3203.
[29] Kumagai N, Tanno K, Nakajima T, Watanabe N. Electrochim. Acta, 1983, 28: 17.
[30] Kodama R, Terada Y, Nakai I, Komaba S, Kumagai N. J. Electrochem. Soc., 2006, 153: A583.
[31] Tamura S, Kato K,Goto M. Z. Anorg. Allg. Chem., 1974, 410: 313.
[32] Poizot P, Laruelle S, Grugeon S, Dupont L, Tarascon J. Nature, 2000, 407: 496.
[33] Chan C K, Peng H, Liu G, McIlwrath K, Zhang X F, Huggins R A, Cui Y. Nat. Nanotech., 2007, 3: 31.
[34] Wei M, Wei K, Ichihara M, Zhou H. Electrochem. Commun., 2008, 10: 980.
[35] Luo H, Wei M, Wei K. Mater. Chem. Phys., 2010, 120: 6.
[36] Kim J W, Augustyn V, Dunn B. Adv. Energy Mater., 2012, 2: 141.
[37] Augustyn V, Come J, Lowe M A, Kim J W, Taberna P L, Tolbert S H, Abruña H D, Simon P, Dunn B. Nat. Mater., 2013, 12: 518.
[38] Wang X, Li G, Chen Z, Augustyn V, Ma X, Wang G, Dunn B, Lu Y. Adv. Energy Mater., 2011, 1: 1089.
[39] Mai L, Xu L, Han C, Xu X, Luo Y, Zhao S, Zhao Y. Nano Lett., 2010, 10: 4750.
[40] Zhu N, Liu W, Xue M, Xie Z, Zhao D, Zhang M, Chen J, Cao T. Electrochim. Acta, 2010, 55: 5813.
[41] Fan Q, Whittingham M S. Electrochem. Solid-State Lett., 2007, 10: A48.
[42] Le Viet A, Reddy M, Jose R, Chowdari B, Ramakrishna S. Electrochim. Acta, 2011, 56: 1518.
[43] Wen H, Liu Z, Wang J, Yang Q, Li Y, Yu J. Appl. Surf. Sci., 2011, 257: 10084.
[44] Park G, Gunawardhana N, Lee C, Lee S M, Lee Y S, Yoshio M. J. Power Sources, 2013, 236: 145.
[45] Kumagai N, Ishiyama I, Tanno K. J. Power Sources, 1987, 20: 193.
[46] Li B, Han C, He Y B, Yang C, Du H, Yang Q H, Kang F. Energy Environ. Sci., 2012, 5: 9595.
[47] Zhang X F, Wang K X, Wei X, Chen J S. Chem. Mater., 2011, 23: 5290.
[48] Hao Y J, Lai Q Y, Lu J Z, Ji X Y. Ionics, 2007, 13: 369.
[49] Zhang B, Du H, Li B, Kang F. Electrochem. Solid-State Lett., 2010, 13: A36.
[50] Cai R, Jiang S, Yu X, Zhao B, Wang H, Shao Z. J. Mater. Chem., 2012, 22: 8013.
[51] Thackeray M, De Kock A, Rossouw M, Liles D, Bittihn R, Hoge D. J. Electrochem. Soc., 1992, 139: 363.
[52] Schoonman J, Tuller H, Kelder E. J. Power Sources, 1999, 81: 44.
[53] Islam M S, Driscoll D J, Fisher C A, Slater P R. Chem. Mater., 2005, 17: 5085.
[54] Li G, Wang X, Ma X. J. Energy Chem., 2013, 22: 357.
[55] Van der Ven A, Bhattacharya J, Belak A A. Acc. Chem. Res., 2012, 46: 1216.
[56] Yoo J E, Park J, Cha G, Choi J. Thin Solid Films, 2013, 531: 583.
[57] Shen Y, Xiong T, Shang J, Yang K. Res. Chem. Intermediat, 2008, 34: 353.
[58] Gasperin M. J. Solid State Chem., 1984, 53: 144.
[59] Cava R, Murphy D, Zahurak S. J. Electrochem. Soc., 1983, 130: 2345.
[60] Cava R, Santoro A, Murphy D, Zahurak S, Roth R. J. Solid State Chem., 1982, 42: 251.
[61] Inoue K, Suzuki S, Nagai M. J. Electroceram., 2010, 24: 110.
[62] Gopaiakrishnan R, Viswanathan B, Ramakrishnan V, Kuriacose J. Mater. Chem. Phys., 1987, 18: 171.
[63] Jayaraman S, Aravindan V, Kumar P S, Wong C L, Ramakrishna S, Madhavi S. ACS Appl. Mater. Interfaces, 2014, 6: 8660.
[64] Aravindan V, Sundaramurthy J, Jain A, Kumar P S, Ling W C, Ramakrishna S, Srinivasan M P, Madhavi S. ChemSusChem, 2014, 7: 1858.
[65] Fei L, Xu Y, Wu X, Li Y, Xie P, Deng S, Smirnov S, Luo H. Nanoscale, 2013, 5: 11102.
[66] Guo B, Yu X, Sun X G, Chi M, Qiao Z A, Liu J, Hu Y S, Yang X Q, Goodenough J B, Dai S. Energy Environ. Sci., 2014, 7: 2220.
[67] Jo C, Kim Y, Hwang J, Shim J, Chun J, Lee J. Chem. Mater., 2014, 26: 3508.
[68] Dominko R, Baudrin E, Umek P, Ar D? on D, Gaberš D? ek M, Jamnik J. Electrochem. Commun., 2006, 8: 673.
[69] Dominko R, Dupont L, Gaberš D? ek M, Jamnik J, Baudrin E. J. Power Sources, 2007, 174: 1172.
[70] Colin J F, Pralong V, Hervieu M, Caignaert V, Raveau B. Chem. Mater., 2008, 20: 1534.
[71] Colin J F, Pralong V, Caignaert V, Hervieu M, Raveau B. Inorg. Chem., 2006, 45: 7217.
[72] Colin J F, Pralong V, Hervieu M, Caignaert V, Raveau B. J. Mater. Chem., 2008, 18: 3121.
[73] Cheng Q, Liang J, Zhu Y, Si L, Guo C, Qian Y. J. Mater. Chem. A, 2014, 2: 17258.
[74] Son J. Electrochem. Commun., 2004, 6: 990.
[75] Li H, Zhou H. Chem. Commun., 2012, 48: 1201.
[76] Kim C, Norberg N S, Alexander C T, Kostecki R, Cabana J. Adv. Funct. Mater., 2013, 23: 1214.
[77] Fan Q, Lei L, Sun Y. Nanoscale, 2014, 6: 7188.
[78] Fan Q, Lei L, Yin G, Sun Y. Chem. Commun., 2014, 50: 2370.
[79] Xu H, Shu J, Hu X, Sun Y, Luo W, Huang Y. J. Mate. Chem. A, 2013, 1: 15053.
[80] Kwak J E, Yun H, Chae H. Acta Crystallogr. Sect. E: Struct. Rep. Online, 2005, 61: i132.
[81] Lu Y, Goodenough J B, Dathar G K P, Henkelman G, Wu J, Stevenson K. Chem. Mater., 2011, 23: 3210.
[82] Cho A, Son J, Aravindan V, Kim H, Kang K, Yoon W, Kim W, Lee Y. J. Mater. Chem., 2012, 22: 6556.
[83] Li H, Liu X, Zhai T, Li D, Zhou H. Adv. Energy Mater., 2013, 3: 428.
[84] Li G, Wang X, Chen Z, Ma X, Lu Y. Electrochim. Acta, 2013, 102: 351.
[85] Li G, Wang X, Ma X. J. Mater. Chem. A, 2013, 1: 12409.
[86] Tabero P. J. Therm. Anal. Calorim., 2007, 88: 269.
[87] Murphy D, Greenblatt M, Cava R, Zahurak S. Solid State Ionics, 1981, 5: 327.
[88] Zachau C B, West K, Jacobsen T, Skaarup S. Solid State Ionics, 1992, 53: 364.
[89] Reddy M A, Varadaraju U. Chem. Mater., 2008, 20: 4557.
[90] Fuentes A F, Garza E B, Martine2-de la Cruz A, Torres-Martínez L M. Solid State Ionics, 1997, 93: 245.
[91] Montemayor S M, Mendez A A, Martínez-de la Cruz A, Fuentes A F,Torres-Martínez L M. J. Mater. Chem., 1998, 8: 2777.
[92] Yamada H, Hibino M, Kudo T. Solid State Ionics, 2001, 140: 249.
[93] Saritha D, Pralong V, Varadaraju U, Raveau B. J. Solid State Chem., 2010, 183: 988.
[94] Permér L, Lundberg M. J. Solid State Chem., 1989, 81: 21.
[95] Permér L, Lundberg M. J. Less Common Metals, 1989, 156: 145.
[96] Bohnke C, Fourquet J, Randrianantoandro N, Brousse T, Crosnier O. J. Solid State Electrochem., 2001, 5: 1.
[97] Reddy M V, Madhavi S, Subba Rao G V, Chowdari B V R. J. Power Sources, 2006, 162: 1312.
[98] Patoux S, Dolle M, Rousse G, Masquelier C. J. Electrochem. Soc., 2002, 149: A391.
[99] Drozhzhin O, Vorotyntsev M, Maduar S, Khasanova N, Abakumov A, Antipov E. Electrochim. Acta, 2013, 89: 262.
[100] Reddy M A, Varadaraju U. J. Phys. Chem. C, 2011, 115: 25121.
[101] Cava R, Santoro A, Murphy D, Zahurak S, Roth R. Solid State Ionics, 1981, 5: 323.

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[3] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[4] 刘新叶, 梁智超, 王山星, 邓远富, 陈国华. 碳基材料修饰聚烯烃隔膜提高锂硫电池性能研究[J]. 化学进展, 2021, 33(9): 1665-1678.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 陆嘉晟, 陈嘉苗, 何天贤, 赵经纬, 刘军, 霍延平. 锂电池用无机固态电解质[J]. 化学进展, 2021, 33(8): 1344-1361.
[7] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[8] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[9] 江松, 王家佩, 朱辉, 张琴, 丛野, 李轩科. 二维材料V2C MXene的制备与应用[J]. 化学进展, 2021, 33(5): 740-751.
[10] 黄国勇, 董曦, 杜建委, 孙晓华, 李勃天, 叶海木. 锂离子电池高压电解液[J]. 化学进展, 2021, 33(5): 855-867.
[11] 张长欢, 李念武, 张秀芹. 柔性锂离子电池的电极[J]. 化学进展, 2021, 33(4): 633-648.
[12] 穆德颖, 刘铸, 金珊, 刘元龙, 田爽, 戴长松. 废旧锂离子电池正极材料及电解液的全过程回收及再利用[J]. 化学进展, 2020, 32(7): 950-965.
[13] 庄全超, 杨梓, 张蕾, 崔艳华. 锂离子电池的电化学阻抗谱分析研究进展[J]. 化学进展, 2020, 32(6): 761-791.
[14] 吴战, 李笑涵, 钱奥炜, 杨家喻, 张文魁, 张俊. 基于无机电致变色材料的变色储能器件[J]. 化学进展, 2020, 32(6): 792-802.
[15] 汪靖伦, 冉琴, 韩冲宇, 唐子龙, 陈启多, 秦雪英. 锂离子电池有机硅功能电解液[J]. 化学进展, 2020, 32(4): 467-480.
阅读次数
全文


摘要

锂离子电池铌基氧化物负极材料