English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 137-145 DOI: 10.7536/PC140836 前一篇   后一篇

• 综述与评论 •

不对称三烯胺催化的发展

蒋坤1, 陈应春*2   

  1. 1. 第三军医大学药学系 重庆 400038;
    2. 四川大学华西药学院 成都 610041
  • 收稿日期:2014-08-01 修回日期:2014-10-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 陈应春 E-mail:ycchen@scu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21122056)资助

The Development of Asymmetric Trienamine Catalysis

Jiang Kun1, Chen Yingchun*2   

  1. 1. Colleage of Pharmacy, Third Military Medicinal University, Chongqing 400038, China;
    2. West China School of Pharmacy, Sichuan University, Chengdu 610041, China
  • Received:2014-08-01 Revised:2014-10-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21122056).

手性胺可以与多不饱和羰基化合物原位生成三烯胺中间体,其给电子效应根据插烯规则可通过共轭不饱和体系传递,进而提高三烯胺体系的HOMO能量,并能够在远端β,ε-或δ,ε-位与多种缺电子烯烃发生Diels-Alder环加成反应。采用这种合成策略,可以制备许多结构多样和复杂的环状手性化合物。这种策略除了能够高效地在羰基化合物远端直接实现官能团化,更重要的是ε-反应位点即使距离催化剂手性中心达七个键之远,仍能获得优秀的立体选择性控制,这在不对称合成中具有重要的研究价值。本文将总结近年来不对称三烯胺催化机制的发现及发展,重点介绍2,4-二烯醛、多种二烯酮、含羰基芳香化合物经由三烯胺、交叉共轭三烯胺或形式三烯胺进行的不对称反应,并对手性胺催化的进一步应用进行展望。

A chiral amine catalyst can generate polyconjugated trienamine intermediates with polyunsaturated carbonyl compounds. As such, the electron-donating property of the amine catalyst can be transmitted along the C C bonds, raising the HOMO energy of the polyconjugated enamine systems. As a result, highly asymmetric Diels-Alder cycloaddition reactions with a variety of electron-deficient alkenes could occur at the remote β, ε- or δ, ε-positions of trienamines, which can efficiently produce a wide range of chiral cyclic substances with highly structural diversity and complexity. This catalytic strategy not only successfully realizes the direct functionalizations of carbonyl compounds at the remote ε-position, but also excellent diastereo- and enantioselectivity could be obtained even though the reactive ε-site is seven bounds away from the chiral center of amine catalyst. In this respect, this catalytic protocol is of great usefulness and importance in organic synthesis because the related compounds are hard to be prepared using the conventional methods. In the review, we summarize the discovery and the development of asymmetric trienamine catalysis over the past few years, with emphasis on the asymmetric reactions of 2, 4-dienals, various types of dienones, and aromatic compounds specifically functionalized with a carbonyl group, via trienamine, cross-conjugated trienamine or formal trienamine catalysis. In addition, the future development of chiral amines is also discussed.

Contents
1 Introduction
2 Asymmetric reactions of 2,4-dienals through trienamine catalysis
3 Asymmetric reactions of 2,4-dienals through cross-conjugated trienamine catalysis
4 Asymmetric reactions of dienones through trienamine catalysis
5 Asymmetric reactions of aromatic compounds through formal trienamine catalysis
6 Conclusion and outlook

中图分类号: 

()

[1] MacMillan D W C. Nature, 2008, 455: 304.
[2] Mukherjee S, Yang J W, Hoffmann S, List B. Chem. Rev., 2007, 107: 5471.
[3] Pihko P M, Erkkilä A, Majander I. Chem. Rev., 2007, 107: 5416.
[4] Ramachary D B, Reddy Y V. Eur. J. Org. Chem., 2012, 2012: 865.
[5] Jiang H, Albrecht ?, Jørgensen K A. Chem. Sci., 2013, 4: 2287.
[6] Kumar I, Ramaraju P, Mir N A. Org. Biomol. Chem., 2013, 11: 709.
[7] Li J L, Liu T Y, Chen Y C. Acc. Chem. Res., 2012, 45: 1491.
[8] Jia Z J, Jiang H, Li J L, Gschwend B R, Li Q Z, Yin X, Grouleff J, Chen Y C, Jørgensen K A. J. Am. Chem. Soc., 2011, 133: 5053.
[9] Jia Z J, Zhou Q, Zhou Q Q, Chen P Q, Chen Y C. Angew. Chem. Int. Ed., 2011, 50: 8638.
[10] Jiang H, Gschwend B, Albrecht ?, Hansen S G, Jørgensen K A. Chem. Eur. J., 2011, 17: 9032.
[11] Albrecht ?, Acosta F C, Fraile A, Albrecht A, Christensen J, Jørgensen K A. Angew. Chem. Int. Ed., 2012, 51: 9088.
[12] Ma C, Gu J, Teng B, Zhou Q Q, Li R, Chen Y C. Org. Lett., 2013, 15: 6206.
[13] Zhang S J, Zhang J, Zhou Q Q, Dong L, Chen Y C. Org. Lett., 2013, 15: 968.
[14] Li X, Lin M H, Han Y, Wang F, Cheng J P. Org. Lett., 2013, 16: 114.
[15] Portalier F, Bourdreux F, Marrot J, Moreau X, Coeffard V, Greck C. Org. Lett., 2013, 15: 5642.
[16] Jiang H, Cruz D C, Li Y, Lauridsen V H, Jørgensen K A. J. Am. Chem. Soc., 2013, 135: 5200.
[17] Liu J X, Zhou Q Q, Deng J G, Chen Y C. Org. Biomol. Chem., 2013, 11: 8175.
[18] Jia Z J, Jiang K, Zhou Q Q, Dong L, Chen Y C. Chem. Commun., 2013, 49: 5892.
[19] Zhou Q Q, Yuan X, Xiao Y C, Dong L, Chen Y C. Tetrahedron, 2013, 69: 10369.
[20] Ma C, Jia Z J, Liu J X, Zhou Q Q, Dong L, Chen YC. Angew. Chem. Int. Ed., 2013, 52: 948.
[21] Halskov K S, Johansen T K, Davis R L, Steurer M, Jensen F, Jørgensen K A. J. Am. Chem. Soc., 2012, 134: 12943.
[22] Dieckmann A, Breugst M, Houk K N. J. Am. Chem. Soc., 2013, 135: 3237.
[23] Xiong X F, Zhou Q, Gu J, Dong L, Liu T Y, Chen Y C. Angew. Chem. Int. Ed., 2012, 51: 4401.
[24] Feng X, Zhou Z, Zhou R, Zhou Q Q, Dong L, Chen Y C. J. Am. Chem. Soc., 2012, 134: 19942.
[25] Feng X, Zhou Z, Ma C, Yin X, Li R, Dong L, Chen Y C. Angew. Chem. Int. Ed., 2013, 52: 14173.
[26] Tian X, Liu Y, Melchiorre P. Angew. Chem. Int. Ed., 2012, 51: 6439.
[27] Zhou Z, Feng X, Yin X, Chen Y C. Org. Lett., 2014, 16: 2370.
[28] Chen P Q, Xiao Y C, Yue C Z, Chen Y C. Org. Chem. Front., 2014, 1: 490.
[29] Liu Y, Nappi M, Arceo E, Vera S, Melchiorre P. J. Am. Chem. Soc., 2011, 133: 15212.
[30] Liu Y, Nappi M, Escudero-Adán E C, Melchiorre P. Org. Lett., 2012, 14: 1310.
[31] Jiang H, Rodríguez-Escrich C, Johansen T K, Davis R L, Jørgensen K A. Angew. Chem. Int. Ed., 2012, 51: 10271.
[32] Rodríguez-Escrich C, Davis R L, Jiang H, Stiller J, Johansen T K, Jørgensen K A. Chem. Eur. J., 2013, 19: 2932.
[33] Xiao Y C, Yue C Z, Chen P Q, Chen Y C. Org. Lett., 2014, 16: 3208.
[34] Li J L, Yue C Z, Chen P Q, Xiao Y C, Chen Y C. Angew. Chem. Int. Ed., 2014, 53: 5449.

[1] 董军, 许家喜. 烯亚砜化合物的制备及反应概述*[J]. 化学进展, 0, (): 11-11.
[2] 董玉, 李海波, 李津, 冯磊, 张志伟*. 高三尖杉酯碱和三尖杉酯碱的合成研究[J]. 化学进展, 2018, 30(12): 1827-1835.
[3] 黄依铃, 魏文廷*. 水介质中的有机自由基反应[J]. 化学进展, 2018, 30(12): 1819-1826.
[4] 黄卫军, 朱宁*, 方正, 郭凯*. 含呋喃环生物基聚酰胺的合成[J]. 化学进展, 2018, 30(12): 1836-1843.
[5] 赵婉茹, 胡欣, 朱宁, 方正, 郭凯. 连续流离子聚合[J]. 化学进展, 2018, 30(9): 1330-1340.
[6] 窦言东, 顾晓旭, 蒋建泽, 朱勍. 导向基团辅助的C—H键功能化[J]. 化学进展, 2018, 30(9): 1317-1329.
[7] 贾斌, 马养民*, 陈镝, 陈璞, 胡岩. 天然产物吲哚二酮哌嗪生物碱的结构及生物活性[J]. 化学进展, 2018, 30(8): 1067-1081.
[8] 符志成, 许家喜*. 氮杂环丁烷的合成[J]. 化学进展, 2018, 30(8): 1047-1066.
[9] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[10] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[11] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[12] 杨琪, 欧阳昆冰, 刘亮, 席振峰. 三甲基硅基(TMS)化学:C(sp3)-Si键的催化活化[J]. 化学进展, 2018, 30(5): 513-527.
[13] 郑啸, 黄培强*. 二碘化钐参与及二茂钛催化的氮α-位碳自由基偶联反应及其在含氮杂环合成中的应用[J]. 化学进展, 2018, 30(5): 528-546.
[14] 张宇, 岑竞鹤, 熊文芳, 戚朝荣, 江焕峰*. CO2:羧基化反应的C1合成子[J]. 化学进展, 2018, 30(5): 547-563.
[15] 陈劲进, 常丹, 肖福红, 邓国军*. 基于环己酮氧化脱氢构建碳-碳与碳-杂键[J]. 化学进展, 2018, 30(5): 564-577.
阅读次数
全文


摘要