English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 79-90 DOI: 10.7536/PC140829 前一篇   后一篇

• 综述与评论 •

基于环糊精的智能刺激响应型药物载体

廖荣强, 刘满朔, 廖霞俐*, 杨波*   

  1. 昆明理工大学生命科学与技术学院 昆明 650500
  • 收稿日期:2014-08-01 修回日期:2014-10-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 廖霞俐, 杨波 E-mail:xlliao@yahoo.com;yangbo6910@sina.com
  • 基金资助:

    国家自然科学基金项目(No. 21062009, 21362016)和云南省应用基础研究项目(No. 2011FZ059)资助

Cyclodextrin-Based Smart Stimuli-Responsive Drug Carriers

Liao Rongqiang, Liu Manshuo, Liao Xiali*, Yang Bo*   

  1. Faculty of Life Science and Technology, Kunming University of Science and Technology, Kunming 650500, China
  • Received:2014-08-01 Revised:2014-10-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21062009, 21362016) and the Yunnan Natural Science Foundation Project(No. 2011FZ059).

智能药物载体凭借其独特的刺激-响应机制控制药物的释放速度和转运部位,已成为当前化学与药学领域的研究热点之一。由于具有提高药物在体内的生物利用度和降低其毒副作用等优点,智能药物载体将在未来的临床治疗中起到越来越重要的作用。近年来,环糊精作为药物载体材料的研究取得了巨大进步,其在药物控释的时间、空间和剂量上更为准确。环糊精具有大环结构,可自组装、易于功能化、天然无毒且价格低廉,已被广泛应用于构筑智能药物载体。凭借其自组装、分子识别和动态可逆性能力,环糊精可以同其他生物相容性材料构筑具有不同性能的智能药物载体。这种载体可在外界刺激下做出相关理化性质改变的反馈调节,包括通过内源性刺激(pH值、氧化还原物质和酶浓度等)和外源性刺激(温度、光、磁场、超声和电压等),进而控制药物的释放。本文综述了面向不同刺激因素的基于环糊精智能刺激响应型药物载体的作用机理、特点和应用的最新研究进展,并对其发展前景作了进一步的展望。

Smart stimuli-responsive drug carriers (STRDCs) are a hot topic in current chemical and pharmaceutical research, owing to their merits of controlled release of drugs relying on unique stimuli-responsive mechanisms. Well-designed STRDCs could efficiently improve drug bioavailability and reduce side effects in vivo, thus they are of great potential in future clinical treatments. Cyclodextrin (CD)-based drug carriers, which have the ability to control drug delivery in temporal, spatial and dosage in a more precise fashion, have made tremendous progress in recent years. STRDCs could be constructed based on CDs ascribing to their virtues of readily availability, low toxicity, self-assembly and functional flexibility. More and more materials of good biocompatibility are employed to fabricate STRDCs in combination with CDs to furnish unique characteristics of self-assembly, molecular recognition and dynamical reversibility. These STRDCs could administrate drug controlled release upon the regulation of their physico-chemical properties in response to external stimuli, which usually fall into two categories: endogenous (pH, redox agents, enzyme concentration, etc.) and exogenous (temperature, light, magnetic force, ultrasound, voltage stimulation, etc.) ones. In this review, the recent advances on the cyclodextrin-based STRDCs are summarized, which are classified referring to the variations of stimulating factor. The features, mechanism of action and potent applications of STRDCs are discussed. In addition, some personal perspectives on this field are also presented.

Contents
1 Introduction
2 Endogenous stimuli-responsive drug delivery
2.1 pH sensitive systems
2.2 Redox sensitive systems
2.3 Enzyme sensitive systems
3 Exogenous stimuli-responsive drug delivery
3.1 Thermo sensitive systems
3.2 Light sensitive systems
3.3 Magnetically responsive systems
3.4 Ultrasound responsive systems
3.5 Electro responsive systems
4 Conclusion

中图分类号: 

()

[1] Hoeben F J M, Jonkheijm P, Meijer E W, Schenning A. Chem. Rev., 2005, 105: 1491.
[2] Yagai S, Kitamura A. Chem. Soc. Rev., 2008, 37: 1520.
[3] Brunsveld L, Folmer B J B, Meijer E W, Sijbesma R P. Chem. Rev., 2001, 101: 4071.
[4] Liu Y, Chen Y. Acc. Chem. Res., 2006, 39: 681.
[5] Chen Y, Liu Y. Chem. Soc. Rev., 2010, 39: 495.
[6] Del Valle E M M. Process Biochem., 2004, 39: 1033.
[7] Kurkov S V, Loftsson T. Int. J. Pharm., 2013, 453: 167.
[8] Zheng P J, Hu X, Zhao X Y, Li L, Tam K C, Gan L H. Macromol. Rapid Commun., 2004, 25: 678.
[9] Liu Y, Zhao D Y, Ma R J, Xiong D A, An Y L, Shi L Q. Polymer, 2009, 50: 855.
[10] Liu Y, Han B H, Sun S X, Wada T, Inoue Y. J. Org. Chem., 1999, 64: 1487.
[11] Steinman R M, Mellman I S, Muller W A, Cohn Z A. J. Cell Biol., 1983, 96: 1.
[12] Killisch I, Steinlein P, Romisch K, Hollinshead R, Beug H, Griffiths G. J. Cell Sci., 1992, 103: 211.
[13] Stubbs M, McSheehy P M J, Griffiths J R, Bashford C L. Mol. Med. Today, 2000, 6: 15.
[14] Yang B, Jia H Z, Wang X L, Chen S, Zhang X Z, Zhuo R X, Feng J. Adv. Healthc. Mater., 2014, 3: 596.
[15] Kulkarni A, DeFrees K, Hyun S H, Thompson D H. J. Am. Chem. Soc., 2012, 134: 7596.
[16] Kulkarni A, Badwaik V, DeFrees K, Schuldt R A, Gunasekera D S, Powers C, Vlahu A, VerHeul R, Thompson D H. Biomacromolecules, 2014, 15: 12.
[17] Duncan B, Kim C, Rotello V M. J. Control. Release, 2010, 148: 122.
[18] Wang H, Chen Y, Li X Y, Liu Y. Mol. Pharm., 2007, 4: 189.
[19] Zhao D, Chen Y, Liu Y. Chem. Asian J., 2014, 9: 1895.
[20] Chen Y, Yu L, Feng Z, Hou S, Liu Y. Chem. Commun., 2009: 4106.
[21] Liu Y, Yu Z L, Zhang Y M, Guo D S, Liu Y P. J. Am. Chem. Soc., 2008, 130: 10431.
[22] Meng H A, Xue M, Xia T A, Zhao Y L, Tamanoi F, Stoddart J F, Zink J I, Nel A E. J. Am. Chem. Soc., 2010, 132: 12690.
[23] Xue M, Zhong X, Shaposhnik Z, Qu Y Q, Tamanoi F, Duan X F, Zink J I. J. Am. Chem. Soc., 2011, 133: 8798.
[24] Yan Q, Zhang H J, Zhao Y. ACS Macro Lett., 2014, 3: 472.
[25] Zhang Z, Ding J X, Chen X F, Xiao C S, He C L, Zhuang X L, Chen L, Chen X S. Polym. Chem., 2013, 4: 3265.
[26] Chen T, Fu J J. Nanotechnology, 2012, 23.
[27] Zhao Y L, Li Z X, Kabehie S, Botros Y Y, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2010, 132: 13016.
[28] Du L, Liao S J, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 15136.
[29] Ashley C E, Carnes E C, Phillips G K, Padilla D, Durfee P N, Brown P A, Hanna T N, Liu J W, Phillips B, Carter M B, Carroll N J, Jiang X M, Dunphy D R, Willman C L, Petsev D N, Evans D G, Parikh A N, Chackerian B, Wharton W, Peabody D S, Brinker C J. Nat. Mater., 2011, 10: 389.
[30] Ambrogio M W, Thomas C R, Zhao Y L, Zink J I, Stoddartt J F. Acc. Chem. Res., 2011, 44: 903.
[31] Vallet-Regi M, Balas F, Arcos D. Angew. Chem. Int. Ed., 2007, 46: 7548.
[32] Tarn D, Ashley C E, Xue M, Carnes E C, Zink J I, Brinker C J. Acc. Chem. Res., 2013, 46: 792.
[33] Luo Z, Hu Y, Cai K, Ding X, Zhang Q, Li M, Ma X, Zhang B, Zeng Y, Li P, Li J, Liu J, Zhao Y. Biomaterials, 2014, 35: 7951.
[34] Zhang Q, Wang X L, Li P Z, Nguyen K T, Wang X J, Luo Z, Zhang H C, Tan N S, Zhao Y L. Adv. Funct. Mater., 2014, 24: 2450.
[35] Luo Z, Ding X W, Hu Y, Wu S J, Xiang Y, Zeng Y F, Zhang B L, Yan H, Zhang H C, Zhu L L, Liu J J, Li J H, Cai K Y, Zhao Y L. ACS Nano, 2013, 7: 10271.
[36] Liu R, Zhang Y, Feng P Y. J. Am. Chem. Soc., 2009, 131: 15128.
[37] Hu Y, Zhao N, Yu B, Liu F, Xu F J. Nanoscale, 2014, 6: 7560.
[38] Chen X F, Chen L, Yao X M, Zhang Z, He C L, Zhang J P, Chen X S. Chem. Commun., 2014, 50: 3789.
[39] Diez P, Sanchez A, Gamella M, Martinez-Ruiz P, Aznar E, de la Torre C, Murguia J R, Martinez-Manez R, Villalonga R, Pingarron J M. J. Am. Chem. Soc., 2014, 136: 9116.
[40] Aznar E, Villalonga R, Gimenez C, Sancenon F, Marcos M D, Martinez-Manez R, Diez P, Pingarron J M, Amoros P. Chem. Commun., 2013, 49: 6391.
[41] Zhang J, Yuan Z F, Wang Y, Chen W H, Luo G F, Cheng S X, Zhuo R X, Zhang X Z. J. Am. Chem. Soc., 2013, 135: 5068.
[42] Guo D S, Zhang T X, Wang Y X, Liu Y. Chem. Commun., 2013, 49: 6779.
[43] Park C, Kim H, Kim S, Kim C. J. Am. Chem. Soc., 2009, 131: 16614.
[44] Patel K, Angelos S, Dichtel W R, Coskun A, Yang Y W, Zink J I, Stoddart J F. J. Am. Chem. Soc., 2008, 130: 2382.
[45] Schild, H.G. Prog. Polym. Sci., 1992, 17: 163.
[46] Zhang Z X, Liu K L, Li J. Angew. Chem. Int. Ed., 2013, 125: 6300.
[47] Sakai F, Chen G S, Jiang M. Polym. Chem., 2012, 3: 954.
[48] Zeng J G, Shi K Y, Zhang Y Y, Sun X H, Zhang B L. Chem. Commun., 2008, 3753.
[49] Li Y W, Guo H L, Zhang Y F, Zheng J, Gan J Q, Guan X X, Lu M G. RSC Adv., 2014, 4: 17768.
[50] Du X X, Song N, Yang Y W, Wu G L, Ma J B, Gao H. Polym. Chem., 2014, 5: 5300.
[51] Voskuhl J, Stuart M C A, Ravoo B J. Chem. Eur. J., 2010, 16: 2790.
[52] Uhlenheuer D A, Wasserberg D, Haase C, Nguyen H D, Schenkel J H, Huskens J, Ravoo B J, Jonkheijm P, Brunsveld L. Chem. Eur. J., 2012, 18: 6788.
[53] Liu B W, Zhou H, Zhou S T, Zhang H J, Feng A C, Jian C M, Hu J, Gao W P, Yuan J Y. Macromolecules, 2014, 47: 2938.
[54] Han D H, Tong X, Boissiere O, Zhao Y. ACS Macro Lett., 2012, 1: 57.
[55] Han D H, Boissiere O, Kumar S, Tong X, Tremblay L, Zhao Y. Macromolecules, 2012, 45: 7440.
[56] Wang L, Zou H X, Dong Z Y, Zhou L P, Li J X, Luo Q, Zhu J Y, Xu J Y, Liu J Q. Langmuir, 2014, 30: 4013.
[57] Zhou C C, Cheng X H, Yan Y, Wang J D, Huang J B. Langmuir, 2014, 30: 3381.
[58] Suzaki Y, Taira T, Takeuchi D, Osakada K. Org. Lett., 2007, 9: 887.
[59] Zhang J J, Shen X H. J. Phys. Chem. B, 2013, 117: 1451.
[60] Nalluri S K M, Voskuhl J, Bultema J B, Boekema E J, Ravoo B J. Angew. Chem. Int. Ed., 2011, 50: 9747.
[61] Jin H B, Zheng Y L, Liu Y, Cheng H X, Zhou Y F, Yan D Y. Angew. Chem. Int. Ed., 2011, 50: 10352.
[62] Inoue Y, Kuad P, Okumura Y, Takashima Y, Yamaguchi H, Harada A. J. Am. Chem. Soc., 2007, 129: 6396.
[63] Li Z Q, Zhang Y M, Chen H Z, Zhao J, Liu Y. J. Org. Chem., 2013, 78: 5110.
[64] Agostini A, Sancenon F, Martinez-Manez R, Marcos M D, Soto J, Amoros P. Chem. Eur. J., 2012, 18: 12218.
[65] Park C, Lee K, Kim C. Angew. Chem. Int. Ed., 2009, 48: 1275.
[66] Liu Y, Yu C Y, Jin H B, Jiang B B, Zhu X Y, Zhou Y F, Lu Z Y, Yan D Y. J. Am. Chem. Soc., 2013, 135: 4765.
[67] Samanta A, Stuart M C A, Ravoo B J. J. Am. Chem. Soc., 2012, 134: 19909.
[68] Himmelein S, Lewe V, Stuart M C A, Ravoo B J. Chem. Sci., 2014, 5: 1054.
[69] Kandoth N, Kirejev V, Monti S, Gref R, Ericson M B, Sortino S. Biomacromolecules, 2014, 15: 1768.
[70] Fraix A, Gref R, Sortino S. J. Mat. Chem. B, 2014, 2: 3443.
[71] Master A, Livingston M, Sen Gupta A. J. Control. Release, 2013, 168: 88.
[72] Ford P C. Nitric Oxide-Biol. Ch., 2013, 34: 56.
[73] Peng K, Tomatsu I, Kros A. Chem. Commun., 2010, 46: 4094.
[74] Tamesue S, Takashima Y, Yamaguchi H, Shinkai S, Harada A. Angew. Chem. Int. Ed., 2010, 49: 7461.
[75] Yamaguchi H, Kobayashi Y, Kobayashi R, Takashima Y, Hashidzume A, Harada A. Nat. Commun., 2012, 3: 603.
[76] Liu L, Rui L, Gao Y, Zhang W. Polym. Chem., 2014, 5: 5453.
[77] Ferris D P, Zhao Y L, Khashab N M, Khatib H A, Stoddart J F, Zink J I. J. Am. Chem. Soc., 2009, 131: 1686.
[78] Tarn D, Ferris D P, Barnes J C, Ambrogio M W, Stoddart J F, Zink J I. Nanoscale, 2014, 6: 3335.
[79] Li Q L, Wang L, Qiu X L, Sun Y L, Wang P X, Liu Y, Li F, Qi A D, Gao H, Yang Y W. Polym. Chem., 2014, 5: 3389.
[80] Guardado-Alvarez T M, Devi L S, Russell M M, Schwartz B J, Zink J I. J. Am. Chem. Soc., 2013, 135: 14000.
[81] Guardado-Alvarez T M, Devi L S, Vabre J M, Pecorelli T A, Schwartz B J, Durand J O, Mongin O, Blanchard-Desce M, Zink J I. Nanoscale, 2014, 6: 4652.
[82] Hayashi K, Ono K, Suzuki H, Sawada M, Moriya M, Sakamoto W, Yogo T. ACS Appl. Mater. Interfaces, 2010, 2: 1903.
[83] Schenkel J H, Samanta A, Ravoo B J. Adv. Mater., 2014, 26: 1076.
[84] Sahu S, Mohapatra S. Dalton Trans., 2013, 42: 2224.
[85] Lv S N, Zhao M Q, Cheng C J, Zhao Z G. J. Nanopart. Res., 2014, 16.
[86] Anirudhan T S, Dilu D, Sandeep S. J. Magn. Magn. Mater., 2013, 343: 149.
[87] Badruddoza A Z M, Rahman M T, Ghosh S, Hossain M Z, Shi J Z, Hidajat K, Uddin M S. Carbohydr. Polym., 2013, 95: 449.
[88] Lee J, Kim H, Kim S, Lee H, Kim J, Kim N, Park H J, Choi E K, Lee J S, Kim C. J. Mater. Chem., 2012, 22: 14061.
[89] Schroeder A, Honen R, Turjeman K, Gabizon A, Kost J, Barenholz Y. J. Control. Release, 2009, 137: 63.
[90] Kheirolomoom A, Mahakian L M, Lai C Y, Lindfors H A, Seo J W, Paoli E E, Watson K D, Haynam E M, Ingham E S, Xing L, Cheng R H, Borowsky A D, Cardiff R D, Ferrara K W. Mol. Pharm., 2010, 7: 1948.
[91] Gourevich D, Dogadkin O, Volovick A, Wang L J, Gnaim J, Cochran S, Melzer A. J. Control. Release, 2013, 170: 316.
[92] Zhao Y, Zhu Y C, Fu J K, Wang L Z. Chem. Asian J., 2014, 9: 790.
[93] Harada A. Acc. Chem. Res., 2001, 34: 456.
[94] Feng A C, Yan Q, Zhang H J, Peng L, Yuan J Y. Chem. Commun., 2014, 50: 4740.
[95] Peng L, Feng A C, Zhang H J, Wang H, Jian C M, Liu B W, Gao W P, Yuan J Y. Polym. Chem., 2014, 5: 1751.
[96] Yan Q, Yuan J Y, Cai Z N, Xin Y, Kang Y, Yin Y W. J. Am. Chem. Soc., 2010, 132: 9268.
[97] Nakahata M, Takashima Y, Yamaguchi H, Harada A. Nat. Commun., 2011, 2.
[98] Du P, Liu J H, Chen G S, Jiang M. Langmuir, 2011, 27: 9602.
[99] Nakahata M, Takashima Y, Harada A. Angew. Chem. Int. Ed., 2014, 53: 3617.
[100] Yang L T, Gomez-Casado A, Young J F, Nguyen H D, Cabanas-Danes J, Huskens J, Brunsveld L, Jonkheijm P. J. Am. Chem. Soc., 2012, 134: 19199.

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 叶娟, 林子谦, 李伟健, 向洪平, 容敏智, 章明秋. 自修复有机硅材料的制备策略[J]. 化学进展, 2023, 35(1): 135-156.
[3] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[4] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[5] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[6] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[7] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[8] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[9] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[10] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[11] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[12] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[13] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[14] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[15] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.