English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 310-320 DOI: 10.7536/PC140827 前一篇   

• 综述与评论 •

车用质子交换膜燃料电池材料部件

王诚*1, 王树博1, 张剑波2, 李建秋2, 欧阳明高2, 王建龙1   

  1. 1. 清华大学核能与新能源技术研究院 北京 100084;
    2. 清华大学汽车安全与节能国家重点实验室 北京 100084
  • 收稿日期:2014-08-01 修回日期:2014-11-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 王诚 E-mail:wangcheng@tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.U1462112),科技部国际合作项目(No.2013DFG41460,2013DFG60080),国家重点基础研究发展计划(973)项目(No.2012CB215401),国家高技术发展计划(863)项目(No.2013AA110202)资助

The Key Materials and Components for Proton Exchange Membrane Fuel Cell

Wang Cheng*1, Wang Shubo1, Zhang Jianbo2, Li Jianqiu2, Yang Minggao2, Wang Jianlong1   

  1. 1. Institute of Nuclear and New Energy Technology, Tsinghua University, Beijing 100084, China;
    2. State Key Laboratory of Automotive Safety and Energy, Tsinghua University, Beijing 100084, China
  • Received:2014-08-01 Revised:2014-11-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. U1462112),the Program of Internatinal S&T Cooperation (No.2013DFG41460, 2013DFG60080),the State Key Basic Science Research Project of China (No.2012CB215401), and the National High Technology Research and Development Program of China(No.2013AA110202).

车用燃料电池主要包括质子交换膜燃料电池、金属-空气燃料电池等,其中质子交换膜燃料电池是目前车用燃料电池的主要开发对象(以下简称车用燃料电池)。经过全球范围内近十年的持续研发,车用燃料电池在能量效率、功率密度与比功率、低温启动等功能特性方面已经取得了突破性进展,新一轮的燃料电池汽车产业化浪潮正在迫近。然而,车用燃料电池的耐久性和成本还没达到预期商业化目标,是其产业化的最后障碍。探索和研发燃料电池用新型关键材料部件是解决这两大问题、推进其商业化进程的关键所在,也是车用燃料电池长期的研究重点和热点。本文系统地梳理了近几年来车用燃料电池质子交换膜、催化层、气体扩散层、双板板关键材料部件的研究进展和成果,并分类进行了简要评述,分析了其性能与商业化目标的差距。最后展望了车用燃料电池关键材料部件今后的发展方向。

Vehicle fuel cells include proton exchange membrane fuel cell (PEMFC), metal/air fuel cell, etc. The PEMFC is the most promising candidate for automobile application. Through over a decade continuous research and development all over the world, the performances of PEMFC, such as energy efficiency, volume and mass power density, low temperature start ability, have attained breakthrough progress. A new round of fuel cell automobile industrialization has been being approached. However, the properties of durability and cost of the PEMFC system have not met the target of industrialization, and the state of art of durability and cost become the obstacles of PEMFC automobiles industrialization. The novel key materials and components used in the PEMFC should be focused on in the future study, and must be further researched and developed for the two obstacles resolution and the PEMFC industrialization promotion. In this paper, based on a large number of current research articles, the progress and achievement of key materials and components for PEMFC, include proton exchange membrane, catalyst layer, gas diffusion layer, bipolar plate, have been detailed analyzed and classified reviewed. The gap between their state of art and the target of industrialization is analyzed and the emphasis development direction in the future is summarized based on the key materials and components.

Contents
1 Introduction
2 Proton exchange membrane
3 Catalyst layer
3.1 Catalysts
3.2 Support materials for catalysts
3.3 Fabrication technology of catalyst layer
4 Gas diffusion layer
5 Bipolar plate
6 Summary and outlook

中图分类号: 

()

[1] 欧阳明高(Ouyang M G). 内燃机学报( Transactions of CSICE), 2008, 26: 107.
[2] Sung W, Song Y, Yu K, Lim T. SAE Int. J. Engines, 2010, 3(1): 768.
[3] Yokoyama T. California Air Resources Board ZEV Symposium, Sacramento CA, Sep., 2009. 21.
[4] 李建秋(Li J Q), 方川(Fang C), 徐梁飞(Xu L F). 汽车安全与节能学报(Journal of Automotive Safety and Energy), 2014, 5(1): 17.
[5] Jones D J. Global Change, Energy Issues and Regulation Policies. Netherlands: Springer, 2013: 161.
[6] The Fuel Cell Technical Team. Fuel Cell Technical Team Roadmap, Washington: DOE, June 2013.
[7] Matthew M. Polymer Electrolyte Fuel Cell Degradation. Dutch: Elsevier, 2011. 112.
[8] Holmström N, Wiezell K, Lindbergh G. J. Electro. Soc., 2012, 159 (8): F369.
[9] Chen Y, Guo R L, Lee C H, Lee M, James E. McGrath. International Journal of Hydrogen Energy, 2012, 37: 6132.
[10] Wang Z B, Tang H L, Li J R, Jin A P, Wang Z, Zhang H L, Pan M. International Journal of Hydrogen Energy, 2013, 38: 4725.
[11] Jung M S, Kim T H, Yoon Y J, Kang C G, Yu D M, Lee J Y, Kim H J, Hong Y T. Journal of Membrane Science, 2014, 459:72.
[12] Chen S W, Chen K C, Zhang X, Hara R, Endo N, Higa M, Okamoto K, Wang L J. Polymer, 2013, 54: 236.
[13] Feng S G, Shang Y M, Wang Y W, Liu G S, Xie X F, Dong W Q, Xu J M, Mathurb V K. Journal of Membrane Science, 2010, 352: 14.
[14] Feng S G, Shang Y M, Liu G S, Dong W Q, Xie X F, Xu J M, Mathurb V K. Journal of Power Sources, 2010, 195: 6450.
[15] Feng S G, Shang Y M, WangY Z, Xie X F, Mathurb V K, Xu J M. Journal of Power Sources, 2010, 195: 2541.
[16] Feng S G, Shang Y M, Wang S B, Xie X F, WangY Z, Wang Y W, Xu J M. Journal of Membrane Science, 2010, 346: 105.
[17] Mader J A, Benicewicz B C. Fuel Cells, 2011, 11(2): 222.
[18] Qian W, Shang Y M, Fang M, Wang S B, Xie X F, Wang J H, Wang W X, Du J Y, Wang Y W, Mao Z Q. International Journal of Hydrogen Energy, 2012, 37: 12919.
[19] Qian W, Shang Y M, Wang S B, Xie X F, Mao Z Q. International Journal of Hydrogen Energy, 2013, 38: 11053.
[20] Makharia R, Kocha S S, Yu P T, Sweikart M A, Gu W, Wagner F T, Gasteiger H A. ECS Transactions, 2006, 1 (8): 3.
[21] Lee K, Zhang J, Wang H, Wilkinson D P. J. Appl. Electrochem., 2006, 36(5): 507.
[22] Antolini E, Gonzalez E R. Solid State Ionics, 2009, 180(9/10): 746.
[23] Zhang P, Huang S Y, Popov B N. J. Electrochem. Soc., 2010, 157(8): B1163.
[24] Seger B, Kongkanand A, Vinodgopal K, Kamat P V. J. Electroanal. Chem., 2008, 621: 198.
[25] Antolini E, Gonzalez E R. Appl. Catal. B: Environ, 2010, 96: 245.
[26] Debe M K. ECS Trans., 2012, 45 (2): 47.
[27] Antolini E, Perez J. J. Mater. Sci., 2011, 46: 4435.
[28] Ehteshami S M M, Chan S H. Electrochimica Acta, 2013, 93: 334.
[29] Zhou X W, Gan Y L, Du J J, Tian D N, Zhang R H, Yang C Y, Dai Z X. Journal of Power Sources, 2013, 232: 310.
[30] Galeano C, Baldizzone C, Bongard H, Spliethoff B, Weidenthaler C, Meier J C, Mayrhofer K J J, Schüth F. Adv. Funct. Mater., 2014, 24: 220.
[31] Zhang G, Shao Z G, Lu W T, Xie F, Xiao H, Qin X P, Yi B L. Applied Catalysis B: Environmental, 2013, 132/133: 183.
[32] Choi R, Choi S, Choi C H, Nam K M, Woo S I, Park J T, Han S W. Chem. Eur. J., 2013, 19: 8190.
[33] Wang S Y, Jiang S P, Xin W G, Guo J. Electrochimica Acta, 2011, 56: 1563.
[34] Kim J M, Joh H I, Jo S M, Ahn D J, Ha H Y, Hong S A, Kim S K. Electrochimica Acta, 2010, 55: 4827.
[35] Guo S J, Zhang S, Sun X L, Sun S H. J. Am. Chem. Soc., 2011, 133: 15354.
[36] Bi Y P, Lu G X. Electrochemistry Communications, 2009, 11: 45.
[37] Sun S H, Jaouen F, Dodelet J P. Adv. Mater., 2008, 20: 3900.
[38] Shimizu W, Okada K, Fujita Y, Zhao S S, Murakami Y. Journal of Power Sources, 2012, 205: 24.
[39] Zhou X J, Qiao J L, Yang L, Zhang J J. Adv. Energy Mater., 2014, 4(8): 1301523.
[40] He W, Jiang H J, Zhou Y, Yang S D, Xue X Z, Zou Z Q, Zhang X G, Akins D L, Yang H. Carbon, 2012, 50(1): 265.
[41] Liao C S, Liao C T, Tso C Y, Shy H J. Mater. Chem. Phys., 2011, 130(1/2): 270.
[42] Kundu P, Nethravathi C, Deshpande P A, Rajamathi M, Madras G, Ravishankar N. Chem. Mater., 2011, 23(11): 2772.
[43] Paul R R K, Mulchandani A. J. Power Sources, 2013, 223: 23.
[44] Qiu J D, Wang G C, Liang R P, Xia X H, Yu H W. J. Phys.Chem. C, 2011, 115(31): 15639.
[45] Maiyalagan T, Dong X, Chen P, Wang X. J. Mater. Chem., 2012, 22: 5286.
[46] Hu Y, Zhang H, Wu P, Zhang H, Zhou B, Cai C. Phys. Chem.Chem. Phys., 2011, 13: 4083.
[47] Choi S M, Seo M H, Kim H J, Kim W B. Synth. Met., 2011, 161: 2405.
[48] Hung T F, Wang B, Tsai C W, Tu M H, Wang G X, Liu R S, Tsai D P, Lo M Y, Shy D S, Xing X K. Int. J. Hydrogen Energy, 2012, 37(19): 14205.
[49] Li Y J, Li Y J, Zhu E, McLouth T, Chiu C Y, Huang X Q, Huang Y. J. Am. Chem. Soc., 2012, 134(30): 12326.
[50] Guo S J, Sun S H. J. Am. Chem. Soc., 2012, 134(5): 2492.
[51] Rajalakshmi N, Lakshmi N, Dhathathreyan K S. International Journal of Hydrogen Energy, 2008, 33: 7521.
[52] Ioroi T, Akita T, Asahi M, Yamazaki S I, Siroma Z, Fujiwara N, Yasuda K. Journal of Power Sources, 2013, 223: 183.
[53] Kakinuma K, Chino Y J, Senoo Y C, Uchida M, Kamino T, Uchida H, Deki S, Watanabe M. Electrochimica Acta, 2013, 110: 316.
[54] Du C Y, Chen M, Cao X Y, Yin G P, Shi P F. Electrochemistry Communications, 2009, 11: 496.
[55] Suzuki S, Onodera T, Kawaji J, Mizukami T, Morishima M, Yamaga K. Journal of Power Sources, 2013, 223: 79.
[56] Yin S B, Mu S C, Lv H F, Cheng N C, Pan M, Fu Z Y. Applied Catalysis B: Environmental, 2010, 93: 233.
[57] Kimmel Y, Yang L R, Kelly T G, Rykov S A, Chen J G. Journal of Catalysis, 2014, 312: 216.
[58] Ou Y W, Cui X L, Zhang X Y, Jiang Z Y. Journal of Power Sources, 2010, 195: 1365.
[59] Middelman E. Fuel Cells Bulletin, 2002, 2002(11): 9.
[60] Tian Z Q, Lim S H, Poh C K, Tang Z, Xia Z T, Luo Z Q, Shen P K, Chua D, Feng Y P, Shen Z X, Lin J Y. Advanced Energy Materials, 2011, 1(6): 1205.
[61] Debe M K, Hendricks S M, Vernstrom G D, Meyers M, Brostrom M, Stephens M, Chan Q, Willey J, Hamden M, Mittelsteadt C K, Capuano C B, Ayers K E, Anderson E B. Journal of the Electrochemical Society, 2012, 159(6): K165.
[62] Bonnefont A, Ruvinskiy P, Rouhet M, Orfanidi A, Neophytides S, Savinova E. WIREs Energy Environ, 2014, 3: 505.
[63] Pan C F, Wu H, Wang C, Wang B, Zhang L, Cheng Z D, Hu P, Pan W, Zhou Z Y, Yang X, Zhu J. Advanced Martials, 2008, 20(9): 1644.
[64] Dong B, Gwee L, Salas-de la Cruz D, Winey K I, Elabd Y A. Nano Letters, 2010. 10(9): 3785.
[65] Cindrella L, Kannan A M, Lin J F, Saminathan K, Ho Y, Lin C W, Wertz J. J. Power Sources, 2009, 194: 146.
[66] Arvay A, Yli-Rantala E, Liu C H, Peng X H, Koski P, Cindrella L, Kauranen P, Wilde P M, Kannan A M. J. Power Sources, 2012, 213: 317.
[67] Park H. Energy Conversion and Management, 2014, 81: 220.
[68] Cho J, Oh H, Park J, Min K, Lee E, Jyoung J. International Journal of Hydrogen Energy, 2014, 39: 495.
[69] Burheim O S, Su H, Pasupathi S, Pharoah J G, Pollet B G. International Journal of Hydrogen Energy, 2013, 38: 8437.
[70] Seo J H, Baik K D, Kim D K, Kim S, Choi J W, Kim M, Song H H, Kim M S. International Journal of Hydrogen Energy, 2013, 38: 16245.
[71] Middleman E, Kout W, Vogelaar B, Lenssen J, de Waal E. J. Power Sources, 2003, 118: 44.
[72] Cho E A, Jeon U S, Ha H Y, Hong S A, Oh I H. J. Power Sources, 2004, 125: 178.
[73] Kuan H C, Ma C C M, Chen K H, Chen S M. J. Power Sources, 2004, 134: 7.
[74] Heinzel A, Mahlendorf F, Neimzig O, Kreuz C. J. Power Sources, 2004, 131: 35.
[75] Wang H, Turner J A. Fuel Cells, 2010, 10(4): 510.
[76] Hermann A, Chaudhuri T, Spagnol P. Int. J. Hydrogen Energy, 2005, 30: 1297.
[77] Mehta V, Cooper J S. J. Power Sources, 2003, 114: 32.
[78] Brett D J L, Brandon N P. J. Fuel Cell Sci. Technol., 2007, 4: 29.
[79] Pozio A, Silva R F, De Francesco M, Giorgi L. Electrochim. Acta, 2003, 48: 1543.
[80] Wang H, Sweikart M A, Turner J A. J. Power Sources, 2003, 115: 243.
[81] Wang H, Turner J A. J. Power Sources, 2004, 128: 193.
[82] Wang H, Teeter G, Turner J A. J. Electrochem. Soc., 2005, 152: B99.
[83] Wang H, Turner J A. ECS Transactions, 2006, 1: 263.
[84] Brady M P, Weisbrod K, Zawodzinski C, Paulauskas I, Buchanan R A, Walker L R. Electrochem. Solid State Lett., 2002, 5: A24.
[85] Brady M P, Weisbrod K, Paulauskas I, Buchanan R A, More L, Wang H, Wilson M, Garzon F, Alker L R. Scripta Mater., 2004, 50: 1017.
[86] Yang M J, Zhang D M. Energy, 2014, 64: 242.
[87] 刘峰(Liu F), 王诚(Wang C), 张剑波(Zhang J B), 兰爱东(Lan A D), 李建秋(Li J Q), 欧阳明高(Ouyang M G). 化学进展(Progress in Chemistry), 2014, 26(11): 1763.

[1] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[2] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[5] 叶淳懿, 杨洋, 邬学贤, 丁萍, 骆静利, 符显珠. 钯铜纳米电催化剂的制备方法及应用[J]. 化学进展, 2022, 34(9): 1896-1910.
[6] 王乐壹, 李牛. 从铜离子、酸中心与铝分布的关系分析不同模板剂制备Cu-SSZ-13的NH3-SCR性能[J]. 化学进展, 2022, 34(8): 1688-1705.
[7] 杨启悦, 吴巧妹, 邱佳容, 曾宪海, 唐兴, 张良清. 生物基平台化合物催化转化制备糠醇[J]. 化学进展, 2022, 34(8): 1748-1759.
[8] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[9] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[10] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[11] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[12] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[13] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.
[14] 沈树进, 韩成, 王兵, 王应德. 过渡金属单原子电催化剂还原CO2制CO[J]. 化学进展, 2022, 34(3): 533-546.
[15] 楚弘宇, 王天予, 王崇臣. MOFs基材料高级氧化除菌[J]. 化学进展, 2022, 34(12): 2700-2714.