English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 38-46 DOI: 10.7536/PC140823 前一篇   后一篇

• 综述与评论 •

类石墨相C3N4复合光催化剂

齐跃红, 刘利*, 梁英华, 胡金山, 崔文权*   

  1. 河北联合大学化学工程学院 河北省无机非金属材料重点实验室 唐山 063009
  • 收稿日期:2014-08-01 修回日期:2014-10-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 刘利, 崔文权 E-mail:chemll@126.com;wkcui@163.com
  • 基金资助:

    国家自然科学基金项目(No. 51172063, 51202056, 51372068), 河北省杰出青年科学基金项目(No. B2014209304), 河北省自然科学基金项目(No. E2012401070)和河北省引进留学人员项目(课题)资助

Graphitic Carbon Nitride Compound Photocatalyst

Qi Yuehong, Liu Li*, Liang Yinghua, Hu Jinshan, Cui Wenquan*   

  1. College of Chemical Engineering, Hebei United University, Hebei Provincial Key Laboratory of Inorganic Nonmetallic Materials, Tangshan 063009, China
  • Received:2014-08-01 Revised:2014-10-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51172063, 51202056, 51372068), the Hebei Natural Science Funds for Distinguished Young Scholars (No. B2014209304), the Natural Science Foundation of Hebei Province (No. E2012401070) and the Hebei Provincial Foundation for Returned Scholars.

利用半导体光催化技术将太阳能转化为化学能或直接降解和矿化有机污染物,是解决能源短缺和环境污染等问题的有效途径。聚合物类石墨相氮化碳(g-C3N4)具有类似石墨烯的结构,由于其优异的化学稳定性和独特的电子能带结构,可作为太阳能转化、环境污染物降解的催化剂而得到了广泛关注。g-C3N4制备原料便宜易得、制备方法简单,可作为廉价、稳定、不含金属的可见光光催化剂应用于光催化降解污染物、水分解制氢制氧及有机合成领域。然而光生电荷易复合,使得g-C3N4的催化活性还不能满足大规模应用的需求。本文针对g-C3N4光催化活性的提高,综述了国内外在g-C3N4复合改性方面的重要研究进展,如金属/非金属掺杂、半导体复合、表面金属沉积等,并讨论了复合物的催化机理。

Utilizing photocatalysis technology to convert solar energy into chemical energy or direct degradation and mineralization of organic pollutants is a long-term solution to solve the problem of energy shortage and environmental pollution. Polymer type graphite carbon nitride (g-C3N4) possesses a similar structure with graphene and has been attracted widespread attention as a novel photocatalyst for the light catalytic conversion of solar energy due to its excellent chemical stability and unique electronic band structure. Moreover, the g-C3N4 can be used as a low-cost, stable and metal-free visible-light-driven photocatalyst in the degradation of pollutants, water splitting for hydrogen and oxygen evolution and organic synthesis, as the precursors of g-C3N4 are inexpensive and the synthesis is comparatively simple. Many efforts are still needed to overcome the limitation of fast recombination for pure g-C3N4 in practical application. In this review, recent research progress for g-C3N4 has been reviewed, including metal/non-mental doping, semiconductor coupling, depositing with metals. In addition, the catalytic mechanism for the g-C3N4-based composite is also reviewed.

Contents
1 Introduction
2 g-C3N4-metal composites photocatalyst
3 g-C3N4-oxide composites photocatalyst
4 g-C3N4-sulfide composites photocatalyst
5 g-C3N4-bismuth compounds composites photocatalyst
6 g-C3N4-carbon composites photocatalyst
7 Other g-C3N4 composites photocatalyst
8 Conclusion

中图分类号: 

()

[1] Hoffmann M R, Martin S T, Choi W Y, Bahnemann D W. Chem. Rev., 1995, 95: 69.
[2] Fujishima A, Honda K. Nature, 1972, 238: 37.
[3] Carey J H, Lawrence J, Tosine H M. Bull. Environ. Contam. Toxicol., 1976, 16: 697.
[4] Daghrir R, Drogui P, Robert D. Ind. Eng. Chem.Res., 2013, 52: 3581.
[5] Lv J, Kako T, Li Z S, Zou Z G, Ye J H. J. Phys. Chem. C, 2010, 114(13): 6157.
[6] Wang H, Gao J, Guo T, Wang R, Guo L, Liu Y, Li J. Chem. Commun., 2012, 48: 275.
[7] Cui W Q, An W J, Liu L, Hu J S, Liang Y H. Journal of Hazardous Materials, 2014, 280: 417.
[8] Liang Y H, Lin S L, Liu L, Hu J S, Cui W Q. Applied Catalysis B: Environmental, 2015, 164: 192.
[9] Li L, Wang Y F, Hu J S, Cui W Q, Liang Y H. Journal of Molecular Catalysis A: Chemical, 2014, 934: 309.
[10] Liang Y H, Lin S L, Hu J S, Liu L, Mcevoy J G, Cui W Q. Journal of Molecular Catalysis A: Chemical, 2014, 383/384: 231.
[11] Wang X C, Maeda K, Thomas A, Takanabe K, Xin G, Carlsson J M, Domen K, Antonietti M. Nature Materials, 2009, 8: 76.
[12] Thomas A, Fischer A, Goettmann F, Antonietti M. J. Mater. Chem., 2008, 18: 4893.
[13] Niu C M, Lu Y Z, Lieber C M. Science, 1993, 261: 334.
[14] Guo L P, Chen Y, Wang E Q, Li L, Zhao Z X. Chemical Physics Letters, 1997, 268: 26.
[15] Li C, Yang X G, Yang B J, Yan Y, Qian Y T. Mater. Chem. Phys., 2007, 103: 427.
[16] Montigaud H, Tanguy B, Demazeau G, Birot A M, Dunogues J. Diamond Relat. Mater., 1999, 8: 1707.
[17] Nesting D, Badding J V. Chem. Mater., 1996, 8 (7): 1535.
[18] Alexey A, Minoru A, Dmitri G. Diamond Relat. Mater., 2002, 11(12): 1885.
[19] Bai X J, Zong R L, Li C X, Liu D, Liu Y F, Zhu Y F. Applied Catalysis B: Environmental, 2014, 147: 82.
[20] Ge L, Han C C, Liu J, Li Y F. Applied Catalysis A: General, 2014, 409/410: 215.
[21] Yan S C, Li Z S, Zou Z G. Langmuir, 2009, 25(17): 10397.
[22] Cheng N Y, Tian J Q, Liu Q, Ge C J, Qusti A H, Asiri A M, Al-Youbi A O, Sun X P. ACS Appl.Mater.Interface, 2013, 5: 6815.
[23] Di Y, Wang X C, Thomas A, Antonietti M. ChemCatChem, 2010, 2: 834.
[24] Song X F, Tao H, Chen L X, Sun Y. Materials Letters, 2014, 116: 265.
[25] Groenewolt M, Antonietti M. Advanced Materials, 2005, 17(14): 1789.
[26] Wang X C, Maeda K, Chen X F, Takanabe K, Domen K, Hou Y D, Fu X Z, Antonietti M. Journal of the American Chemical Society, 2009, 131(5): 1680.
[27] Li X H, Wang X C, Antonietti M. Chem. Sci., 2012, 3: 2170.
[28] Chang C, Fu Y, Meng H B, Chun Y, Wan G, Shan G Q, Zhu L Y. Applied Catalysis B: Environmental, 2013, 142/143: 553.
[29] Sridharan K, Jang E Y, Park T J. Applied Catalysis B: Environmental, 2013, 142/143: 718.
[30] Wang X J, Yang W Y, Li F T, Xue Y B, Liu R H, Hao Y J. Ind. Eng. Chem. Res., 2013, 52: 17140.
[31] Yang N, Li G, Wang, W, Yang X, Zhang W F. J. Phys. Chem. Solids, 2011, 72: 1319.
[32] Kumar S, Surendar T, Kumar B, Baruah A, Shanker V. J. Phys. Chem. C, 2013, 117: 26135.
[33] Xi G C, Yue B, Cao J Y, Ye J H. Chemistry-A European Journal, 2011, 17(18): 5145.
[34] Chen J, Shen S H, Guo P H, Wang M, Wu P, Wang X X, Guo L J. Applied Catalysis B: Environmental, 2014, 152/153: 335.
[35] Li X F, Li M, Yang J H, Li X Y, Hu T J, Wang J S, Sui Y R, Wu X T, Kong L G. Journal of Physics and Chemistry of Solids, 2014, 75: 441.
[36] Zhang J S, Grzelczak M, Hou Y D, Maeda K, Domen K, Fu X Z, Antonietti M, Wang X C. Chem. Sci., 2012, 3: 443.
[37] Xu M, Han L, Dong S J. ACS Appl. Mater. Interfaces, 2013, 5: 12533.
[38] Ge L, Zuo F, Liu J K, Ma Q, Wang C, Sun D Z, Bartels L, Feng P Y. J. Phys. Chem. C, 2012, 116: 13708.
[39] Fu J, Chang B B, Tian Y L, Xi F N, Dong X P. J. Mater. Chem. A, 2013, 1: 3083.
[40] Zhang J Y, Wang Y H, Jin J, Zhang J, Lin Z, Huang F, Yu J G. ACS Appl. Mater. Interfaces, 2013, 5: 10317.
[41] Bai X J, Wang L, Zong R L, Zhu Y F. J. Phys. Chem. C, 2013, 117(19): 9952.
[42] Yin L S, Yuan Y P, Cao S W, Zhang Z Y, Xue C. RSC Adv., 2014, 4: 6127.
[43] Cao S W, Yuan Y P, Fang J, Shahjamali M M, Boey F Y C, Barber J, Loo S C C J, Xue C. International Journul of Hydrogen Energy, 2013, 38: 1258.
[44] Zhang W, Wang Y B, Wang Z, Zhong Z Y, Xu R. Chem.Commun., 2010, 46: 7631.
[45] Wang J, Guo P, Guo Q S, Jönsson P G, Zhao Z. CrystEngComm, 2014, 16: 4485.
[46] Wang J J, Guan Z Y, Huang J, Li Q X, Yang J L. J. Mater. Chem. A, 2014, 2: 7960.
[47] Jiang D L, Chen L L, Xie J M, Chen M. Dalton Trans, 2014, 43: 4878.
[48] Ye L Q, Liu J Y, Jiang Z, Peng T Y, Zan L. Applied Catalysis B: Environmental, 2013, 142/143: 1.
[49] Ye L Q, Liu J Y, Gong C Q, Tian L H, Peng T Y, Zan L. ACS Catal., 2012, 2(8): 1677.
[50] Ye L Q, Gong C Q, Liu J Y, Tian L H, Peng T Y, Deng K J, Zan L. 2012, 22: 8354.
[51] Ye L Q, Tian L H, Peng T Y, Zan L. Journal of Materials Chemistry, 2011, 21: 12479.
[52] Fu J, Tian Y L, Chang B B, Xi F N, Dong X P. J. Mater. Chem., 2012, 22: 21159.
[53] Shi S, Gondal M A, Al-Saadi A A, Fajgar R, Kupcik J, Chang X F, Shen K, Xu Q Y, Seddigi Z S. Journal of Colloid and Interface Science, 2014, 416: 212.
[54] Ge L, Han C C, Liu J. Applied Catalysis B: Environmental, 2011, 108/109: 100.
[55] Tian Y L, Chang B B, Lu J L, Fu J, Xi F N, Dong X P. ACS Appl. Mater. Interfaces, 2013, 5: 7079.
[56] Ji Y X, Cao J F, Jiang L Q, Zhang Y H, Yi Z G. Journal of Alloys and Compounds, 2014, 590: 9.
[57] Li Z S, Yang S Y, Zhou J M, Li D H, Zhou X F, Ge C Y, Fang Y P. Chemical Engineering Journal, 2014, 241: 344.
[58] Zhang W D, Sun Y J, Dong F, Zhang W, Duan S, Zhang Q. Dalton Trans, 2014, 43: 12026.
[59] Ge L, Han C C. Applied Catalysis B: Environmental, 2012, 117/118: 268.
[60] Bai X J, Wang L, Wang Y J, Yao W Q, Zhu Y F. Applied Catalysis B: Environmental, 2014, 152/153: 262.
[61] Xiang Q J, Yu J G, Jaroniec M. J. Phys. Chem. C, 2011, 115: 7355.
[62] Ho W K, Yu J C, Lin J, Yu J G, Li P S. Langmuir, 2004, 20: 5865.
[63] Yu J G, Hai Y, Jaroniec M. Journal of Colloid and Interface Science, 2011, 357: 223.
[64] Yu J G, Zhao X J, Zhao Q N.Thin Solid Films. 2000, 379: 7.
[65] Liu G, Niu P, Sun C H, Smith S C, Chen Z G, Lu G Q, Cheng H M. J. Am. Chem. Soc., 2010, 132: 11642.
[66] 张金水(Zhang J S),王博(Wang B),王心晨(Wang X C).化学进展(Progress in Chemistry), 2014, 26: 19.
[67] Wang X C, Blechert S, Antonietti M. ACS Catal., 2012, 2: 1596.
[68] Zhang J S, Zhang M W, Sun R Q, Wang X C. Angew. Chem. Int. Ed., 2012, 51: 10145.
[69] Lin Z Z, Wang X C. Angew. Chem. Int. Ed., 2013, 52: 1735.
[70] Zhang J S, Zhang M W, Yang C, Wang X C. Adv. Mater., 2014, 26: 4121.
[71] Zhang J S, Zhang G G, Chen X F, Lin S, Mohlmann L, Dolega G, Lipner G, Antonietti M, Blechert S, Wang X C. Angew. Chem. Int. Ed., 2012, 51: 3183.
[72] He F, Chen G, Yu Y G, Hao S, Zhou Y S, Zheng Y. ACS Appl. Mater. Interfaces, 2014, 6: 7171.
[73] Li T T, Zhao L H, He Y M, Cai J, Luo M F, Lin J J. Applied Catalysis B: Environmental, 2013, 129: 255.
[74] Katsumata H, Sakai T, Suzuki T, Kaneco S. Ind. Eng. Chem. Res., 2014, 53: 8018.
[75] He Y M, Cai J, Li T T, Wu Y, Yi Y M, Luo M F, Zhao L H. Ind. Eng. Chem. Res., 2012, 51: 14729.

[1] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[2] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[5] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[6] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[7] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[8] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[9] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[10] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[11] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[12] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[15] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
阅读次数
全文


摘要

类石墨相C3N4复合光催化剂