English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 146-156 DOI: 10.7536/PC140804 前一篇   后一篇

• 综述与评论 •

外界刺激调控的表面引发原子转移自由基聚合

李斌1,2, 于波1, 叶谦1, 周峰*1   

  1. 1. 中国科学院兰州化学物理研究所 固体润滑国家重点实验室 兰州 730000;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2014-08-01 修回日期:2014-11-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 周峰 E-mail:zhouf@licp.cas.cn
  • 基金资助:

    中科院重点部署项目(No.KJZD-EW-M01),国家杰出青年科学基金项目(No.21125316)和国家自然科学基金项目(No.21204095)资助

External Stimuli Regulated Surface-Initiated Atom Transfer Radical Polymerization

Li Bin1,2, Yu Bo1, Ye Qian1, Zhou Feng*1   

  1. 1. State Key Laboratory of Solid Lubrication, Lanzhou Institute of Chemical Physics, Chinese Academy of Sciences, Lanzhou 730000, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-08-01 Revised:2014-11-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the Key Research Program of the Chinese Academy of Sciences (No.KJZD-EW-M01), the National Science Foundation for Distinguished Young Scholars of China (No. 21125316) and the National Natural Scence Foundation of China(No. 21204095).

聚合物刷被广泛用于调控表/界面的物理化学性质,表面引发聚合(SIP)是制备聚合物刷的有效手段,该方法已广泛地用于合成具有各种结构以及功能的聚合物以及无机/有机杂化材料。表面引发原子转移自由基聚合(SI-ATRP)方法是表面接枝聚合刷最为常用的方法,但是目前的方法存在很多问题,例如:单体利用率低、反应条件苛刻、可控性较差等。近年来,一些研究组发展了一系列通过外界刺激来调控聚合过程的新方法,旨在克服以上缺陷。本文首先详细介绍了SI-ATRP的机理,在此基础上讨论通过一系列外界刺激(电化学、光、化学试剂等)灵活调控表面引发-原子转移自由基聚合来制备聚合物刷的最新研究进展,同时展望利用新的聚合方法调控聚合物刷结构、界面性质以及应用。

Surface-initiated atom transfer radical polymerization (SI-ATRP) has become an indispensable tool for tailoring of structures and properties of the polymer/inorganic and polymer/organic surfaces. However, traditional SI-ATRP always suffers from limitations such as rigorous synthetic protocols, heavy consumption of monomers and limited ability to control the polymerization process. Recently, many efforts have been taken to dramatically increase the scope of living radical polymerization through the development of new strategies to regulate the activation and deactivation steps by using a wide range of external stimuli, including electrochemistry, light and chemical reagent. We expect that this review will present a broad introduction to the field of the SI-ATRP research.

Contents
1 Introduction
2 Surface-initiated atom transfer radical polymerization(SI-ATRP)
2.1 Initiation
2.2 Propagation
2.3 Termination
3 New methods for SI-ATRP
3.1 Electrochemically mediated ATRP
3.2 Photochemically mediated ATRP
3.3 Chemicals mediated ATRP
4 Characterization of the polymer brush
5 Conclusion

中图分类号: 

()

[1] De Gennes P G. Adv. Colloid Interface Sci., 1987, 27: 189.
[2] Barbey R, Lavanant L, Paripovic D, Schüwer N, Sugnaux C, Tugulu S, Klok H A. Chem. Rev., 2009, 109: 5437.
[3] Azzaroni O, Brown A A, Huck W T S. Adv. Mater., 2007, 19: 151.
[4] He X, Yang W, Pei X. Macromolecules, 2008, 41: 4615.
[5] Zhou F, Huck W T S. Phys. Chem. Chem. Phys., 2006, 8: 3815.
[6] Liu X, Ye Q, Yu B, Liang Y, Liu W, Zhou F. Langmuir, 2010, 26: 12377.
[7] Stuart M A C, Huck W T S, Genzer J, Müller M, Ober C, Stamm M, Sukhorukov G B, Szleifer I, Tsukruk V V, Urban M, Winnik F, Zauscher S, Luzinov I, Minko S. Nat. Mater., 2010, 9: 101.
[8] Zhou F, Shu W, Welland M E, Huck W T S. J. Am. Chem. Soc., 2006, 128: 5326.
[9] Zhou F, Biesheuvel P M, Choi E Y, Shu W, Poetes R, Steiner U, Huck W T S. Nano Lett., 2008, 8: 725.
[10] Ma H, Hyun J, Stiller P, Chilkoti A. Adv. Mater., 2004, 16: 338.
[11] Ye Q, Gao T, Wan F, Yu B, Pei X, Zhou F, Xue Q. J. Mater. Chem., 2012, 22: 13123.
[12] Wan F, Pei X, Yu B, Ye Q, Zhou F, Xue Q. ACS Appl. Mater. Interfaces, 2012, 4: 4557.
[13] Muszanska A K, Rochford E T, Gruszka A, Bastian A A, Busscher H J, Norde W, van der Mei H C, Herrmann A. Biomacromolecules, 2014, 15: 2019.
[14] Zhang N, Pompe T, Amin I, Luxenhofer R, Werner C, Jordan R. Macromol. Biosci., 2012, 12: 926.
[15] Mallik A K, Rahman M M, Czaun M, Takafuji M, Ihara H. J. Chromatogr. A, 2008, 1187: 119.
[16] Rahman M M, Czaun M, Takafuji M, Ihara H. Chem. Eur. J., 2008, 14: 1312.
[17] Wei Q, Cai M, Zhou F, Liu W. Macromolecules, 2013, 46: 9368.
[18] Li B, Yu B, Wang X L, Guo F, Zhou F. Chin. J. Polym. Sci., 2015, 33: 163.
[19] 魏强兵(Wei Q B), 蔡美荣(Cai M R), 周峰(Zhou F). 高分子学报 (Acta Polymerica Sinica), 2012, 10: 1102.
[20] Kim M S, Khang G, Lee H B. Prog. Polym. Sci., 2008, 33: 138.
[21] Otsuka H, Nagasaki Y, Kataoka K. Curr. Opin. Colloid Interface Sci., 2001, 6: 3.
[22] Zhang B, Yu B, Zhou F, Liu W. J. Mater. Chem. A, 2013, 1: 8587.
[23] Liu J, Ma S, Wei Q, Jia L, Yu B, Wang D, Zhou F. Nanoscale, 2013, 5: 11894.
[24] Milner S T. Science, 1991, 251: 905.
[25] Balazs A C, Singh C, Zhulina E, Chern S S, Lyatskaya Y, Pickett G. Prog. Surf. Sci., 1997, 55: 181.
[26] Zhao B, Brittain W J. Prog. Polym. Sci., 2000, 25: 677.
[27] Halperin A, Tirrell M, Lodge T P. Adv. Polym. Sci., 1922, 100: 31.
[28] Brandani P, Stroeve P. Macromolecules, 2003, 36: 9492.
[29] Tran Y, Auroy P. J. Am. Chem. Soc., 2001, 123: 3644.
[30] Sofia S J, Premnath V, Merrill E W. Macromolecules, 1998, 31: 5059.
[31] Roberts C, Chen C S, Mrksich M, Valerie M, Ingber D E, Whitesides G M. J. Am. Chem. Soc., 1998, 120: 6548.
[32] Tsukruk V V. Prog. Polym. Sci., 1997, 22: 247.
[33] Zdyrko B, Luzinov I. Macromol. Rapid Commun., 2011, 32: 859.
[34] Rühe J, Knoll W. J. Macromol. Sci. Polym. Rev., 2002, C42: 91.
[35] Jordan R, Ulman A, Kang J F, Rafailovich M H, Sokolov J. J. Am. Chem. Soc., 1999, 121: 1016.
[36] Advincula R. Adv. Polym. Sci., 2006, 197: 107.
[37] Zhao B, Brittain W J. J. Am. Chem. Soc., 1999, 121: 3557.
[38] Husemann M, Mecerreyes D, Hawker C J, Hedrick J L, Shah R, Abbott N L. Angew. Chem. Int. Ed., 1999, 38: 647.
[39] Kratzmüller T, Appelhans D, Braun H G. Adv. Mater., 1999, 11: 555.
[40] Zeng H L, Gao C, Yan D Y. Adv. Funct. Mater., 2006, 16: 812.
[41] Kim N Y, Jeon N L, Choi I S, Takami S, Harada Y, Finnie K R, Girolami G S, Nuzzo R G, Whitesides G M, Laibinis P E. Macromolecules, 2000, 33: 2793.
[42] Weck M, Jackiw J J, Rossi R R, Weiss P S, Grubbs R H. J. Am. Chem. Soc., 1999, 121: 4088.
[43] Schmelmer U, Jordan R, Geyer W, Eck W, Golzhauser A, Grunze M, Ulman A. Angew. Chem. Int. Ed., 2003, 42: 559.
[44] Prucker O, Schimmel M, Tovar G, Knoll W, Rühe J. Adv. Mater., 1998, 10: 1073.
[45] Azzaroni O. J. Polym. Sci. Part A: Polym. Chem., 2012, 50: 3225.
[46] Chen T, Ferris R, Zhang J, Ducker R, Zauscher S. Prog. Polym. Sci., 2010, 35: 94.
[47] Ma H, Wells M, Beebe T P, Chilkoti A. Adv. Funct. Mater., 2006, 16: 640.
[48] Fan X, Lin L, Dalsin J L, Messersmith P B. J. Am. Chem. Soc., 2005, 127: 15843
[49] Zhou F, Zheng Z, Yu B, Liu W, Huck W T S. J. Am. Chem. Soc., 2006, 128: 16253.
[50] Edmondson S, Osborne V L, Huck W T S. Chem. Soc. Rev., 2004, 33: 14.
[51] Andruzzi L, Hexemer A, Li X, Ober C K, Kramer E J, Galli G, Chiellini E, Fischer D A. Langmuir, 2004, 20: 10498.
[52] Stenzel M H, Zhang L, Huck W T S. Macromol. Rapid Commun., 2006, 27: 1121.
[53] Kitano H, Liu Y, Tokuwa K I, Li L, Iwanaga S, Nakamura M, Kanayama N, Ohno K, Saruwatari Y. Eur. Polym. J., 2012, 48: 1875.
[54] Krause J E, Brault N D, Li Y, Xue H, Zhou Y, Jiang S. Macromolecules, 2011, 44: 9213.
[55] Abdulhussain S, Breitzke H, Ratajczyk T, Grünberg A, Srour M, Arnaut D, Weidler H, Kunz U, Kleebe H J, Bommerich U, Bernarding J, Gutmann T, Buntkowsky G. Chem. Eur. J., 2014, 20: 1159.
[56] Liu Q, Singh A, Liu L. Biomacromolecules, 2013, 14: 226.
[57] Wang J S, Matyjaszewski K. J. Am. Chem. Soc., 1995, 117: 5614.
[58] Kato M, Kamigaito M, Sawamoto M, Higashimura T, Macromolecules, 1995, 28: 1721.
[59] Percec V, Barboiu B. Macromolecules, 1995, 28: 7970.
[60] Matyjaszewski K, Xia J. Chem. Rev., 2001, 101: 2921.
[61] Tsarevsky N V, Matyjaszewski K. Chem. Rev., 2007, 107: 2270.
[62] 李强(Li Q), 张丽芬(Zhang L F), 柏良久(Bai L J), 缪洁(Miao J), 程振平(Cheng Z P), 朱秀林(Zhu X L). 化学进展(Progress in Chemistry), 2010, 22: 2079.
[63] 唐燕春(Tang Y C), 艾长军(Ai C J), 马敬红(Ma J H), 梁伯润(Liang B R). 合成技术与应用(Synthetic Technology and Application), 2007, 22: 38.
[64] He W, Jiang H, Zhang L, Cheng Z, Zhu X. Polym. Chem., 2013, 4: 2919.
[65] Huang X, Wirth M J. Anal. Chem., 1997, 69: 4577.
[66] Bombalski L, Dong H, Listak J, Matyjaszewski K, Bockstaller M R. Adv. Mater., 2007, 19: 4486.
[67] Tugulu S, Klok H A. Biomacromolecules, 2008, 9: 906.
[68] Tang W, Matyjaszewski K. Macromolecules, 2007, 40: 1858.
[69] Turgman-Cohen S, Genzer J. J. Am. Chem. Soc., 2011, 133: 17567.
[70] Turgman-Cohen S, Genzer J. Macromolecules, 2012, 45: 2128.
[71] Tsujii Y, Ohno K, Yamamoto S, Goto A, Fukuda T. Adv. Polym. Sci., 2006, 197: 1.
[72] Matyjaszewski K, Coca S, Gaynor S G, Wei M, Woodworth B E. Macromolecules, 1997, 30: 7348.
[73] Hui C M, Pietrasik J, Schmitt M, Mahoney C, Choi J, Bockstaller M R, Matyjaszewski K. Chem. Mater., 2014, 26: 745.
[74] Oh J K, Min K, Matyjaszewski K. Macromolecules, 2006, 39: 3161.
[75] Min K, Gao H, Matyjaszewski K. J. Am. Chem. Soc., 2005, 127: 3825
[76] Matyjaszewski K, Dong H, Jakubowski W, Pietrasik J, Kusumo A. Langmuir, 2007, 23: 4528.
[77] Payne K A, D'hooge D R, van Steenberge P H M, Reyniers M F, Cunningham M F, Hutchinson R A, Marin G B. Macromolecules, 2013, 46: 3828.
[78] Konkolewicz D, Magenau A J D, Averick S E, Simakova A, He H, Matyjaszewski K. Macromolecules, 2012, 45: 4461.
[79] Zhu G, Zhang L, Zhang Z, Zhu J, Tu Y, Cheng Z, Zhu X. Macromolecules, 2011, 44: 3233.
[80] Konkolewicz D, Wang Y, Krys P, Zhong M, Isse A A, Gennaro A, Matyjaszewski K. Polym. Chem., 2014, 5: 4396.
[81] Konkolewicz D, Wang Y, Zhong M, Krys P, Isse A A, Gennaro A, Matyjaszewski K. Macromolecules, 2013, 46: 8749.
[82] Magenau A J D, Strandwitz N C, Gennaro A, Matyjaszewski K. Science, 2011, 332: 81.
[83] Li B, Yu B, Huck W T S, Zhou F, Liu W. Angew. Chem. Int. Ed., 2012, 51: 5092.
[84] Li B, Yu B, Zhou F. Macromol. Rapid Commun., 2014, 35: 1287.
[85] Yan J, Li B, Zhou F, Liu W. ACS Macro Lett., 2013, 2: 592.
[86] Bortolamei N, Isse A A, Magenau A J D, Gennaro A, Matyjaszewski K. Angew. Chem. Int. Ed., 2011, 50: 11391.
[87] Magenau A J D, Bortolamei N, Frick E, Park S, Gennaro A, Matyjaszewski K. Macromolecules, 2013, 46: 4346.
[88] Li B, Yu B, Huck W T S, Liu W, Zhou F. J. Am. Chem. Soc., 2013, 135: 1708.
[89] Fang Z, Keinan S, Alibabaei L, Luo H, Ito A, Meyer T J. Angew. Chem. Int. Ed., 2014, 53: 4872.
[90] Hosseiny S, van Rijn P. Polymers, 2013, 5: 1229.
[91] Fors B P, Hawker C J. Angew. Chem. Int. Ed., 2012, 51: 8850.
[92] Dadashi-Silab S, Atilla T M, Mohamed A A, Bahadar K S, Yagci Y. Macromol. Rapid Commun., 2014, 35: 454.
[93] Alfredo N V, Jalapa N E, Morales S L, Ryabov A D, Le Lagadec R, Alexandrova L. Macromolecules, 2012, 45: 8135.
[94] Ciftci M, Tasdelen M A, Li W, Matyjaszewski K, Yagci Y. Macromolecules, 2013, 46: 9537.
[95] Ciftci M, Tasdelen M A, Yagci Y. Polym. Chem., 2014, 5: 600.
[96] Anastasaki A, Nikolaou V, Zhang Q, Burns J, Samanta S R, Waldron C, Haddleton A J, McHale R, Fox D, Percec V, Wilson P, Haddleton D M. J. Am. Chem. Soc., 2014, 136: 1141.
[97] Konkolewicz D, Schröder K, Buback J, Bernhard S, Matyjaszewski K. ACS Macro Lett., 2012, 1: 1219.
[98] Dadashi-Silab S, Tasdelen M A, Kiskan B, Wang X, Antonietti M, Yagci Y. Macromol. Chem. Phys., 2014, 215: 675.
[99] Poelma J E, Fors B P, Meyers G F, Kramer J W, Hawker C J. Angew. Chem. Int. Ed., 2013, 125: 6982
[100] Fors B P, Poelma J E, Menyo M S, Robb M J, Spokoyny D M, Kramer J W, Waite J H, Hawker C J. J. Am. Chem. Soc., 2013, 135: 14106.
[101] Yan J, Li B, Yu B, Huck W T S, Liu W, Zhou F. Angew. Chem. Int. Ed., 2013, 52: 9125.
[102] De la Fuente J L, Fernandez-Sanz M, Fernandez-Garcia M, Madruga E L. Macromol. Chem. Phys., 2001, 202: 2565.
[103] Feng W, Chen R, Brash J L, Zhu S. Macromol. Rapid Commun., 2005, 26: 1383.
[104] Chambard G, Klumperman B, German A L. Macromolecules, 2000, 33: 4417.
[105] Bergenudd H, Coullerez G, Jonsson M, Malmstrom E. Macromolecules, 2009, 42: 3302.
[106] París R, de la Fuente J L. J. Polym. Sci. Part A: Polym. Chem., 2005, 43: 6247.
[107] Nanda A K, Matyjaszewski K. Macromolecules, 2003, 36: 599.
[108] Simakova A, Mackenzie M, Averick S E, Park S, Matyjaszewski K. Angew. Chem. Int. Ed., 2013, 52: 12148.
[109] Depp V, Alikhani A, Grammer V, Lele B S. Acta Biomater., 2009, 5: 560.
[110] Silva T B, Spulber M, Kocik M K, Seidi F, Charan H, Rother M, Sigg S J, Renggli K, Kali G, Bruns N. Biomacromolecules, 2013, 14: 2703.
[111] Zhang Q, Wilson P, Li Z, McHale R, Godfrey J, Anastasaki A, Waldron C, Haddleton D M. J. Am. Chem. Soc., 2013, 135: 7355.
[112] Wong E H H, Guntari S N, Blencowe A, van Koeverden M P, Caruso F, Qiao G G. ACS Macro Lett., 2012, 1: 1020.
[113] Hou C, Qu R, Ji C, Wang C, Sun C. J. Appl. Polym. Sci., 2006, 101: 1598.
[114] Buruiana E C, Murariu M, Buruiana T. J. Lumin., 2010, 130: 1794.
[115] Zhang H, Schubert U S. Macromol. Rapid. Commun., 2004, 25: 1225.
[116] Abreu C M R, Mendonça P V, Serra A C, Popov A V, Matyjaszewski K, Guliashvili T, Coelho J F J. ACS Macro Lett., 2012, 1: 1308.
[117] Mendes J P, Branco F, Abreu C M R, Mendonça P V, Popov A V, Guliashvili T, Serra A C, Coelho J F J. ACS Macro Lett., 2014, 3: 544.
[118] Mazurowski M, Gallei M, Rehahn M. ACS Macro Lett., 2012, 1: 1362.
[119] Li B, Yu B, Zhou F. Macromol. Rapid Commun., 2013, 34: 246.
[120] Marutani E, Yamamoto S, Ninjbadgar T, Tsujii Y, Fukuda T, Takano M. Polymer, 2004, 45: 2231.
[121] Kim J B, Huang W, Miller M D, Baker G L, Bruening M L. J. Polym. Sci. Part A: Polym. Chem., 2003, 41: 386.
[122] Sanjuan S, Tran Y. Macromolecules, 2008, 41: 8721
[123] Biesalski M, Rühe J. Macromolecules, 2002, 35: 499
[124] Ivkov R, Butler P D, Satija S K, Fetters L J. Langmuir, 2001, 17: 2999.
[125] Sanyal M K, Sinha S K, Gibaud A, Huang K G, Carvalho B L, Rafailovich M, Sokolov J, Zhao X, Zhao W. Europhys. Lett., 1993, 21: 691.
[126] Karim A, Satija S, Douglas J, Ankner J, Fetters L. Phys. Rev. Lett., 1994, 73: 3407.
[127] Harris B P, Metters A T. Macromolecules, 2006, 39: 2764.
[128] Jordan R, Ulman A, Kang J F, Rafailovich M H, Sokolov J. J. Am. Chem. Soc., 1999, 121: 1016.
[129] Bartholome C, Beyou E, Bourgeat-Lami E, Chaumont P, Lefebvre F, Zydowicz N. Macromolecules, 2005, 38: 1099.
[130] Zhou F, Hu H, Yu B, Osborne V L, Huck W T S, Liu W. Anal. Chem., 2007, 79: 176.
[131] Cortez M L, Pallarola D, Ceolín M, Azzaroni O, Battaglini F. Anal. Chem., 2013, 85: 2414.
[132] Alonso-García T, Rodríguez-Presa M J, Gervasi C, Moya S, Azzaroni O. Anal. Chem., 2013, 85: 6561.
[133] García T A, Gervasi C A, Rodríguez P M J, Otamendi J I, Moya S E, Azzaroni O. J. Phys. Chem. C, 2012, 116: 13944.
[134] Choi E Y, Azzaroni O, Cheng N, Zhou F, Kelby T, Huck W T S. Langmuir, 2007, 23: 10389.
[135] Spruijt E, Choi E Y, Huck W T S. Langmuir, 2008, 24: 11253.
[136] Wang X, Cai X, Guo Q, Zhang T, Kobe B, Yang J. Chem. Commun., 2013, 49: 10064.
[137] Wang X, Guo Q, Cai X, Zhou S, Kobe B, Yang J. ACS Appl. Mater. Interfaces, 2014, 6: 2583.

[1] 牟思阳, 郭静, 于春芳, 宫玉梅, 张森. ATRP大分子引发剂的合成及应用[J]. 化学进展, 2015, 27(5): 539-549.
[2] 钱涛 汪涓涓 张庆华 詹晓力 陈丰秋. 原子转移自由基细乳液聚合*[J]. 化学进展, 2010, 22(04): 663-668.
[3] 隋晓锋,袁金颖,袁伟忠,周密. 无机纳米材料表面引发自由基可控聚合反应*[J]. 化学进展, 2008, 20(0708): 1122-1127.
[4] 倪刚,杨武,何晓燕,薄丽丽,吕维莲. 表面引发聚合反应研究进展*[J]. 化学进展, 2005, 17(06): 1074-1080.
[5] 唐新德,范星河,陈小芳,周其凤. 原子转移自由基聚合( ATRP) 在星形聚合物合成中的应用*[J]. 化学进展, 2005, 17(06): 1089-1095.
[6] 周峰,刘维民. 无机物表面引发聚合反应制备端接枝聚合物膜*[J]. 化学进展, 2002, 14(02): 141-.