English
新闻公告
More
化学进展 2015, Vol. 27 Issue (2/3): 242-250 DOI: 10.7536/PC140803 前一篇   后一篇

• 综述与评论 •

近红外光谱水光谱组学

樊梦丽, 赵越, 刘言, 蔡文生, 邵学广*   

  1. 南开大学化学学院 天津 300071
  • 收稿日期:2014-08-01 修回日期:2014-10-01 出版日期:2015-03-15 发布日期:2014-12-22
  • 通讯作者: 邵学广 E-mail:xshao@nankai.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21175074)资助

Aquaphotomics of Near Infrared Spectroscopy

Fan Mengli, Zhao Yue, Liu Yan, Cai Wensheng, Shao Xueguang*   

  1. College of Chemistry, Nankai University, Tianjin 300071, China
  • Received:2014-08-01 Revised:2014-10-01 Online:2015-03-15 Published:2014-12-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21175074).

水是生命体系的主要成分。"水光谱组学(aquaphotomics)"是指以生命体系中的水作为研究对象,利用光谱技术探测水分子在不同环境下的结构变化,在分子水平上反映生命体系中水分子与其他分子的相互作用或水在生命体系中的功能。近红外光谱水光谱组学可利用扰动因素(通常包括浓度、温度、压力,也可指溶液中加入的其他组分)对水的近红外光谱的影响,借助多元分析方法研究光谱中的谱峰变化,实现生命体系中水的非侵入式监控,从而对生命体系进行分析。本文对近红外光谱水光谱组学的概念、研究内容、研究方法与应用进行了总结与评述。

Water is one of the main components in life system. Taking water molecules in life system as an object, aquaphotomics studies the structural changes of water with perturbations on the system by using spectroscopic techniques. Therefore, aquaphotomics understands the interaction of water with other molecules or the function of water in life systems on molecular level. Aquaphotomics of near infrared spectroscopy focuses on studying the effect of perturbations on the near infrared spectrum of water by multivariate analysis methods. Perturbations generally include the variation of concentrations, temperature, pressure, etc., and can be achieved by adding extra components to a solution or even illumination. Diseases or damages of a life system can also be known as a perturbation. Multivariate analysis methods are used to analyze the spectra acquired under the defined perturbation for extracting the water absorbance patterns (WAPs) in the spectra. Then the WAPs, i.e., the perturbation-induced variation in the spectra can be used to investigate the biological systems. As a result, a non-invasive monitoring of life systems can be achieved by using the technique. The concept, research contents, methods and applications of aquaphotomics of near infrared spectroscopy are summarized in this paper.

Contents
1 Introduction
2 Aquaphotomics
2.1 Concept
2.2 Aquaphotome
2.3 Water absorbance parrerns
2.4 Extended water mirror approach
3 Methods
3.1 PCA
3.2 PLS
3.3 EFA
3.4 MCR-ALS
3.5 2DCOS
4 Applications
4.1 Material structure
4.2 Quantitative determination
4.3 Disease diagnosis
5 Conclusion

中图分类号: 

()

[1] Gowen A A, Amigo J M, Tsenkova R. Anal. Chim. Acta, 2013, 759: 8.
[2] Huse N, Wen H, Nordlund D, Szilagyi E, Daranciang D, Miller T A, Nilsson A, Schoenlein R W, Lindenberg A. Phys. Chem. Phys., 2009, 11: 3951.
[3] Robertson W H, Diken E G, Price E A, Shin J W, Johnson M A. Science, 2003, 299: 1367.
[4] Tsenkova R. J. Near Infrared Spectrosc., 2009, 17: 303.
[5] Chaplin M. Water Structure and Science. http://www1.lsbu.ac.uk/water/vibrat.html#d.
[6] 陆婉珍(Lu W Z). 现代近红外光谱分析技术(第二版)(Modern Near Infrared Spectroscopy Analytical Technology)(Second Edition). 北京:中国石化出版社(Beijing: China's Petrochemical Press), 2006. 39.
[7] Tsenkova R. Spectrosc. Eur., 2010, 22: 6.
[8] Collins J R. Phys. Rev., 1925, 26: 771.
[9] Waggener W C. Anal. Chem., 1958, 30: 1569.
[10] Inoue A, Kojima K, Taniguchi Y, Suzuki K. J. Solution Chem., 1984, 13: 811.
[11] Wu Y Q, Czarnik-Matusewicz B, Murayama K C, Ozaki Y. J. Phys. Chem. B, 2000, 104: 5840.
[12] Czarnecki M A, Haufa K Z. J. Phys. Chem. A, 2005, 109: 1015.
[13] Tsenkova R. NIR news, 2008, 19(1): 7.
[14] Tsenkova R. NIR news, 2006, 17: 10.
[15] Kinoshita K, Miyazaki M, Morita H, Vassileva M, Tang C X, Li D S, Ishikawa O, Kusunoki H, Tsenkova R. Sci. Rep., 2012, 2: 1.
[16] Tsenkova R. NIR news, 2007, 18(2): 15.
[17] Tsenkova R. NIR news, 2006, 18: 14.
[18] Tsenkova R. NIR news, 2007, 18(6): 14.
[19] Wulfert F, Kok W T, Smilde A K. Anal. Chem., 1998, 70: 1761.
[20] Segtnan V H, Sasic S, Isaksson T, Ozaki Y. Anal. Chem., 2001, 73: 3153.
[21] 江勇(Jiang Y), 倪永年(Ni Y N), 朱惠芳(Zhu H F). 南昌大学学报(理科版)(Journal of Nanchang University(Natural Science)), 2012, 36(4): 376.
[22] Davidian A G, Kudrev A G, Myund L A, Khripun M K. J. Near Infrared Spectrosc., 2014, 22: 27.
[23] 张方(Zhang F). 西北大学博士论文(Doctoral Dissertation of Northwest University), 2006.
[24] Williams P. J. Near Infrared Spectrosc., 2009, 17: 315.
[25] 朱向荣(Zhu X R), 李娜(Li N), 史新元(Shi X Y), 乔延江(Qiao Y J), 张卓勇(Zhang Z Y). 高等学校化学学报(Chemical Journal of Chinese Universities), 2008, 29: 906.
[26] Shao X G, Kang J, Cai W S. Talanta, 2010, 82: 1017.
[27] Kang J, Cai W S, Shao X G. Talanta, 2011, 85: 420.
[28] Gampp H, Maeder M. Meyer C J, Zuberbuhler A D. Talanta, 1985, 32: 1133.
[29] Maeder M. Anal. Chem., 1987, 59: 527.
[30] Yuan B, Murayama K, Wu Y, Tsenkova R, Dou X, Era S, Ozaki Y. Appl. Spectrosc., 2003, 57:1223.
[31] Chen Y J, Ozaki Y, Czarnecki M A. Phys. Chem. Chem. Phys., 2013, 15: 18694.
[32] Malinowski E R. J. Chemom., 1988, 3: 49.
[33] Jaumot J, Gargallo R, Juan A, Tauler R. Chemom. Intell. Lab. Syst., 2005, 76: 101.
[34] Noda I. Appl. Spectrosc., 1993, 47: 1329.
[35] Boguslawa C M, Murayama K C, Wu Y Q, Ozaki Y. J. Phys. Chem. B, 2000, 104: 7803.
[36] Murayama K, Ozaki Y. Biopolymers, 2002, 67: 394.
[37] 刘蓉(Liu R), 苗静(Miao J), 杨仁杰(Yang R J). 理化检验-化学分册(Physical and Chemical Inspection-Chemical Booklet), 2013, 49(4), 386.
[38] 康俊(Kang J). 南开大学硕士论文(Master Dissertation of Nankai University), 2011.
[39] Navea S, Juan A D, Tauler R. Anal. Chem., 2003, 75: 5592.
[40] Arimoto H, Tarumi M, Yamada Y. Opt. Rev., 2003, 10: 74.
[41] 方娟娟(Fan J J), 卫雪梅(Wei X M), 强建华(Qiang J H), 黄子夏(Huang Z X), 杜一平(Du Y P). 计算机与应用化学(Computers and Applied Chemistry), 2010, 27(3): 351.
[42] Kakuta N, Arimoto H, Momoki H, Li F G, Yamada Y. Appl. Opt., 2008, 47: 2227.
[43] Chung S H, Cerussi A E, Merritt S I, Ruth J, Tromberg B J. Phys. Med. Biol., 2010, 55: 3753.
[44] Shan R F, Zhao Y, Fan M L, Liu X W, Cai W S, Shao X G. Talanta, 2015, 131: 170.
[45] Tsenkova R, Atanassova S, Kowano S, Toyoda K. J. Animal Sci., 2001, 79: 2550.
[46] Tsenkova R, Atanassova S, Near Infrared Spectroscopy (Eds. Davies A M C, Cho R K). Chichester: NIR Publications, 2002. 123.
[47] Tsenkova R, Iordanova I, Toyoda K, Brown D. Biochem. Biophys. Res. Commun., 2004, 325: 1005.
[48] Jinendra B, Tamaki K, Kuroki S, Vassileva M, Yoshida S, Tsenkova R. Biochem. Biophys. Res. Commun., 2010, 397: 685.

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 陈一明, 李慧颖, 倪鹏, 方燕, 刘海清, 翁云翔. 含儿茶酚基团的湿态组织粘附水凝胶[J]. 化学进展, 2023, 35(4): 560-576.
[3] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[4] 牛文辉, 张达, 赵振刚, 杨斌, 梁风. 钠基-海水电池的发展:“关键部件及挑战”[J]. 化学进展, 2023, 35(3): 407-420.
[5] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[6] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[7] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[8] 李晓光, 庞祥龙. 液体橡皮泥:属性特征、制备策略及应用探索[J]. 化学进展, 2022, 34(8): 1760-1771.
[9] 杨一舟, 彭兵权, 雷晓玲, 方海平. 离子溶液中的芳香环:反常化学计量比的二维晶体和其铁磁性[J]. 化学进展, 2022, 34(7): 1524-1536.
[10] 张德善, 佟振合, 吴骊珠. 人工光合作用[J]. 化学进展, 2022, 34(7): 1590-1599.
[11] 高露莎, 李婧汶, 宗慧, 刘千玉, 胡凡生, 陈接胜. 水热体系中的凝聚态及化学反应[J]. 化学进展, 2022, 34(7): 1492-1508.
[12] 古孝雪, 于晶, 杨明英, 帅亚俊. 丝素蛋白3D打印在生物医学领域中的应用[J]. 化学进展, 2022, 34(6): 1359-1368.
[13] 南明君, 乔琳, 刘玉琴, 张华民, 马相坤. 无机水系液流电池研究[J]. 化学进展, 2022, 34(6): 1402-1413.
[14] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[15] 岳长乐, 鲍文静, 梁吉雷, 柳云骐, 孙道峰, 卢玉坤. 多酸基硫化态催化剂的加氢脱硫和电解水析氢应用[J]. 化学进展, 2022, 34(5): 1061-1075.
阅读次数
全文


摘要

近红外光谱水光谱组学