English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 2019-2026 DOI: 10.7536/PC140722 前一篇   

• 综述与评论 •

非对称纳米材料的性质及其应用

杜娟1, 卢瑛*1, 王祎龙2, 郭桂萍3, 潘迎捷1   

  1. 1. 上海海洋大学食品学院 农业部水产品贮藏保鲜质量安全风险评估实验室 上海水产品加工及贮藏工程技术研究中心 上海 201306;
    2. 同济大学医学院 生物医学工程与纳米科学研究院 上海 200092;
    3. 江苏南通出入境检验检疫局 南通 226000
  • 收稿日期:2014-07-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 卢瑛 E-mail:y-lu@shou.edu.cn
  • 基金资助:

    上海市科技兴农重点攻关项目(沪农科攻字(2009)第6-1号)、江苏出入境检验检疫局科研项目(No. 2013kj34)、上海市科委工程中心建设项目(No. 11DZ2280300)和上海高校一流学科建设项目(食品科学与工程)资助

Properties and Applications of Janus Nanomaterials

Du Juan1, Lu Ying*1, Wang Yilong2, Guo Guiping3, Pan Yingjie1   

  1. 1. Laboratory of Quality & Safety Risk Assessment for Aquatic Products on Storage and Preservation, Ministry of Agriculture, Shanghai Engineering Research Center of Aquatic-Product Processing & Preservation, College of Food Science and Technology, Shanghai Ocean University, Shanghai 201306, China;
    2. Institute for Biomedical Engineering and Nano Science, Tongji University School of Medicine, Shanghai 200092, China;
    3. Nantong Entry-Exit Inspection and Quarantine Bureau, Nantong 226000, China
  • Received:2014-07-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the Key Project of Shanghai Agriculture Prosperity through Science and Technology (No. 2009-6-1), the Jiangsu Entry-Exit Inspection and Quarantine Bureau (No. 2013kj34), the Project of Science and Technology Commission of Shanghai Municipality (No. 11DZ2280300) and the Shanghai first-class discipline construction project (Food Science & Engineering)

具有非对称结构的纳米材料显示出独特的物理和化学性质,在生物传感、靶向药物运载以及分子检测等生物医学领域具有良好的应用前景.本文就非对称纳米材料的性质及其应用方面的最新研究进展进行了综述.首先,我们从三个不同方面讨论了非对称纳米材料的性质及相关应用,即表面双亲性、催化特性和生物相容性;然后着重强调了非对称纳米材料在生物医学上的应用,如生物传感、靶向运载、基因疫苗以及杀菌剂;最后,我们对非对称纳米材料在制备技术的改进及其在食品安全领域的应用作出了展望.

Asymmetric nanomaterials (Janus nanomaterials) comprising at least two components of different chemistry, functionality, and/or polarity have attracted great scientific interest in a wide range of applications. Additional properties are attributed to the asymmetric spatial distribution of functionalities on a single anisotropic nanoparticle, like amphiphilicity or new catalytic characteristic. In addition, Janus nanomaterials' synergistic potential for multilevel targeting, and combination therapies make them particularly attractive for biomedical applications including biosensing, targeting delivery and bio-detection. In this paper, the advances in properties and applications of Janus nanomaterials are summarized. First, some properties and applications of Janus nanomaterials are described in three different aspects: amphipathicity, catalytic characteristic and biocompatibility. Second, the main biomedical applications are highlighted, which include biosensing, targeting delivery, gene vaccine and antimicrobial. Finally, the further development in preparation of Janus nanomaterials and their applications in food safety are expected.

Contents
1 Introduction
2 Properties of Janus particles
2.1 Amphipathy
2.2 Catalytic characteristic
2.3 Biocompatibility
3 Construction and applications of bioprobes based on Janus particles
3.1 Biological sensing
3.2 Targeting delivery
3.3 Gene vaccine
3.4 Antibacterial agents
4 Outlook

中图分类号: 

()

[1] Kaewsaneha C, Tangboriboonrat P, Polpanich D, Eissa M, Elaissari A. ACS Appl. Mater. Interfaces, 2013, 5(6): 1857.
[2] 尹玉勇(Ying Y Y). 复旦大学博士论文(Doctoral Dissertation of Fudan University), 2012.
[3] Walther A, Müller A H E. Soft Matter, 2008, 4: 663.
[4] Binks B P, Fletcher P D I. Langmuir, 2001, 17(16): 4708.
[5] Glaser N, Adams D J, Boker A, Krausch G. Langmuir, 2006, 22(12): 5227.
[6] Fan H, Striolo A. Soft Matter, 2012, 8(37): 9533.
[7] Crossley S, Faria J, Shen M, Resasco D E. Science, 2010, 327(5961): 68.
[8] Walther A, Matussek K, Müller A H. ACS Nano, 2008, 2(6): 1167.
[9] Synytska A, Khanum R, Ionov L, Cherif C, Bellmann C. ACS Appl. Mater. Interfaces, 2011, 3(4): 1216.
[10] Wang C, Yin H F, Dai S, Sun S H. Mater. Chem., 2010, 22(10): 3277.
[11] Lee Y M, Garcia M A, Huls N A F, Sun S H. Dalton Trans., 2010, 122(7): 1293
[12] 康力敏(Kang L M), 刘恩周(Liu E Z), 吴丰(Wu F), 张增庆(Zhang Z Q), 胡晓云(Hu X Y), 姜振益(Jiang Z Y), 樊君(Fan J). 化工进展(Chemical Industry and Engineering Process), 2012(S1):350.
[13] Seh Z W, Liu S H, Low M, Zhang S Y, Liu Z L, Mlayah A, Han M Y. Adv. Mater., 2012, 24(17): 2310.
[14] Pradhan S, Ghosh D, Chen S W. Appl. Mater. Inter., 2009, 1(9): 2060.
[15] Paxton W F, Sen A, Mallouk T E. Chem Inform., 2005, 11(22): 6462.
[16] Fournier-Bidoz S, Arsenault A C, Manners I, Ozin G A. Chem. Commun., 2005, (4): 441.
[17] Wang Y, Hernandez R M, Bartlett D J, Bingham J M, Kline T R, Sen A, Mallouk T E. Langmuir, 2006, 22(25): 10451.
[18] Howse J R, Jones R A L, Ryan A J, Gough T, Vafabakhsh R, Golestanian R. Phys. Rev. Lett., 2007, 99(4): 048102
[19] Sen A, Ibele M, Hong Y, Velegol D. Faraday Discuss., 2009, 143: 15.
[20] Chaturvedi N, Hong Y Y, Sen A, Velegol D. Langmuir, 2010, 26(9): 6308.
[21] Gupta A K, Gupta M. Biomaterials, 2005, 26(18): 3995.
[22] Naahidi S, Jafari M, Edalat F, Raymond K, Khademhosseini A, Chen P. J. Control. Release, 2013, 166(2): 182.
[23] Ding T T, Xue Y, Lu H, Huang Z W, Sun J. Ieee T. Nanobiosci., 2012, 11(4): 336.
[24] Prabhakar P K, Vijayaraghavan S, Philip J, Doble M. Curr. Nanosci., 2011, 7(3): 371.
[25] Yoshida M, Roh K H, Lahann J. Biomaterials, 2007, 28(15): 2446.
[26] Roh K H, Yoshida M, Lahann J. Langmuir, 2007, 23(10): 5683.
[27] Schick I, Lorenz S, Gehrig D, Schilmann A M, Bauer H, Panthofer M, Fischer K, Strand D, Laquai F, Tremel W. J. Am. Chem. Soc., 2014, 136(6): 2473.
[28] Wu L Y, Ross B M, Hong S, Lee L P. Small, 2010, 6(4): 503.
[29] Villalonga, R, Diez P, Sanchez A, Aznar E, Martinez-Manez R, Pingarron J M. Chem.-Eur. J., 2013, 19(24): 7889.
[30] Biji P, Patnaik A. Analyst, 2012, 137(20): 4795.
[31] Sanchez A, Diez P, Martinez-Ruiz P, Villalonga R, Pingarron J M. Electrochem. Commun., 2013, 30: 51.
[32] 许潇(Xu X). 北京大学博士论文(Doctoral Dissertation of Peking University), 2012.
[33] Sotiriou G A, Hirt A M, Lozach P Y, Teleki A, Krumeich F, Pratsinis S E. Chem. Mater., 2011, 23(7): 1985.
[34] 李恬(Li T), 王祎龙(Wang Y L), 郭方方(Guo F F), 时东陆(Shi D L). 化学进展(Progress in Chemistry), 2013, 25(12):2053.
[35] Selvan S T, Patra P K, Ang C Y, Ying J Y. Angew. Chemie, 2007, 46(14): 2448.
[36] Rout S R, Behera B, Maiti T K, Mohapatra S. Dalton T., 2012, 41(35): 10777.
[37] Xu C J, Wang B D, Sun S H. J. Am. Chem. Soc., 2009, 131(12): 4216.
[38] Wang F, Pauletti G M, Wang J T, Zhang J M, Ewing R C, Wang Y L, Shi D L. Adv. Mater., 2013, 25(25):3485.
[39] Sahoo B, Devi K S P, Dutta S, Maiti T K, Pramanik P, Dhara D. J. Colloid Interf. Sci., 2014, 431: 31.
[40] Salem A K, Searson P C, Leong K W. Nat. Mater., 2003, 2(10): 668.
[41] Salem A K, Hung C F, Kim T W, Wu T C, Searson P C, Leong K W. Nanotechnology, 2005, 16(4): 484.
[42] Lee D, Cohen R E, Rubner M F. Langmuir, 2005, 21(21): 9651.
[43] Zhang L, Luo Q, Zhang F, Zhang D M, Wang Y S, Sun Y L, Dong W F, Liu J Q, Huo Q S, Sun H B. J. Mater. Chem., 2012, 22(45): 23741.
[44] Suci P A, Kang S, Young M, Douglas T. J. Am. Chem. Soc., 2009, 131(26): 9164.
[45] Fujishima A, Honda K. Nature, 1972, 238(5358): 37.

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[3] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[4] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[5] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[6] 陈琳, 陈捷锋, 刘一任, 刘玉玉, 凌海峰, 解令海. 有机张力半导体及其光电特性[J]. 化学进展, 2022, 34(8): 1772-1783.
[7] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[8] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[9] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[10] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[11] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[12] 蔡雪儿, 简美玲, 周少红, 王泽峰, 王柯敏, 刘剑波. 人造细胞的化学构建及其生物医学应用研究[J]. 化学进展, 2022, 34(11): 2462-2475.
[13] 赵自通, 张真真, 梁志宏. 催化水解反应的肽基模拟酶的活性来源、催化机理及应用[J]. 化学进展, 2022, 34(11): 2386-2404.
[14] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[15] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
阅读次数
全文


摘要

非对称纳米材料的性质及其应用