English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1701-1711 DOI: 10.7536/PC140705 前一篇   后一篇

• 综述与评论 •

方酰胺衍生物及其在离子识别中的应用

钱小红1,2, 金灿2,3, 张晓宁2, 姜艳*1, 林晨*2, 王乐勇2   

  1. 1. 常州大学石油化工学院 江苏省精细石油化工重点实验室 常州 213164;
    2. 南京大学化学化工学院 南京 210093;
    3. 中国林科院林产化学工业研究所 生物质化学利用国家工程实验室 江苏省生物质能源与材料重点实验室 南京 210042
  • 收稿日期:2014-07-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 姜艳, 林晨 E-mail:jy@cczu.edu.cn; linchen@nju.edu.cn
  • 基金资助:

    江苏省精细石油化工重点实验室项目(No. KF1102)、江苏高校优势学科建设工程项目、江苏省自然科学基金项目(No. BK2011551)和国家自然科学青年基金项目(No. 21302092)资助

Squaramide Derivatives and Their Applications in Ion Recognition

Qian Xiaohong1,2, Jin Can2,3, Zhang Xiaoning2, Jiang Yan*1, Lin Chen*2, Wang Leyong2   

  1. 1. Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering, School of Petrochemical Engineering, Changzhou University, Changzhou 213164, China;
    2. School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093;
    3. Jiangsu Provincial Key Laboratory of Biomass Energy and Materials, National Engineering Laboratory for Biomass Chemical Utilization, Institute of Chemical Industry of Forest Products, Chinese Academy of Forestry, Nanjing 210042, China
  • Received:2014-07-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by Jiangsu Provincial Key Laboratory of Fine Petrochemical Engineering (No. KF1102), the Priority Academic Program Development of Jiangsu Higher Education Institutions,the Natural Science Foundation of Jiangsu Province (No. BK2011551) and the National Natural Science Foundation of China (No. 21302092)

方酰胺骨架具有芳香性的四元环状刚性结构,作为双氢键受体和双氢键给体能与许多客体物种结合,是一类重要、理想的氢键给/受体单元,同时该类给/受体的功能化设计为离子识别行为的检测提供了方便。本文综述了近年来方酰胺化合物的结构特性、衍生化方法,及其在超分子中对阴离子、阳离子与两性离子的识别,实现对离子的跨膜传输、分离与萃取、凝胶响应等功能,以及其在有机小分子催化反应中稳定离子型中间体实现对反应底物催化的功能,并展望了方酰胺化合物在离子识别中的发展前景。

The squaramide motif with the rigid four-member ring structure that shows the aromaticity is a kind of important and ideal hydrogen bond donor/receptor unit, which can bond to many guest molecules as a double-hydrogen-bond receptor and donor. The squaramide derivatives are easy to be functionalized, which provides the convenient way for the design of the novel ion receptors. In this review, we summarize the structures of squaramide derivatives, synthetic methods, and their recent research progress in the anion, cation, and zwitterionic guest recognition, as well as in the organocatalysis. Finally, the prospects of squaramide derivatives in the future are described.

Contents
1 Introduction
2 Responsive mechanism of responsive photonic crystals
3 Device structure of electrically responsive photonic crystals
3.1 Conductive substrate and electrolyte
3.2 Opal and inverse opal photonic crystal electroactive materials
4 Classification of electrically responsive photonic crystals
4.1 Liquid crystal-based electrically responsive photonic crystals
4.2 Polyelectrolyte hydrogel-based electrically responsive photonic crystals
4.3 Organometallic polymer gel-based electrically responsive photonic crystals
4.4 Conductive polymer-based electrically responsive photonic crystals
4.5 Core-shell electrically responsive photonic crystals
5 Application of electrically responsive photonic crystals
6 Existing problems and outlook

中图分类号: 

()

[1] Amendola V, Fabbrizzi L, Mosca L. Chem. Soc. Rev., 2010, 39(10): 3889.
[2] Li A F, Wang J H, Wang F, Jiang Y B. Chem. Soc. Rev., 2010, 39(10): 3729.
[3] Maahs G, Hegenber P. Angew. Chem. Int. Ed., 1966, 5(10): 888.
[4] Tomas S, Rotger M C, Gonzalez J F, Deya P M, Ballester P, Costa A. Tetrahedron Lett., 1995, 36(14): 2523.
[5] Malerich J P, Hagihara K, Rawal V H. J. Am. Chem. Soc., 2008, 130(44): 14416.
[6] Aleman J, Parra A, Jiang H, Jorgensen K A. Chem. Eur. J., 2011, 17(25): 6890.
[7] Quiñonero D, Frontera A, Ballester P, Deyà P M. Tetrahedron Lett., 2000, 41(12): 2001.
[8] Tomàs S, Prohens R, Vega M, Rotger M C, Deyà P M, Ballester P, Costa A. J. Org. Chem., 1996, 61(26): 9394.
[9] Storer R I, Aciro C, Jones L H. Chem. Soc. Rev., 2011, 40(5): 2330.
[10] Ni X, Li X, Wang Z, Cheng J P. Org. Lett., 2014, 16(6): 1786.
[11] Yang W, Du D M. Org. Lett., 2010, 12(23): 5450.
[12] Wurm F R, Klok H A. Chem. Soc. Rev., 2013, 42(21): 8220.
[13] Schmidt A H. Synthesis, 1980: 961.
[14] Rostami A, Colin A, Li X Y, Chudzinski M G, Lough A J, Taylor M S. J. Org. Chem., 2010, 75(12): 3983.
[15] Tietze L F, Arlt M, Beller M, Glusenkamp K H, Jahde E, Rajewsky M F. Chem. Ber., 1991, 124(5): 1215.
[16] Xu Z, Singh N J, Lim J, Pan J, Kim H N, Park S, Kim K S, Yoon J. J. Am. Chem. Soc., 2009, 131(42): 15528.
[17] Li S, Jia C, Wu B, Luo Q, Huang X, Yang Z, Li Q S, Yang X J. Angew. Chem. Int. Ed., 2011, 50(25): 5721.
[18] Prohens R, Martorell G, Ballester P, Costa A. Chem. Commun., 2001, (16): 1456.
[19] Frontera A, Morey J, Oliver A, Piña M N, Quiñonero D, Costa A, Ballester P, Deyà P M, Anslyn E V. J. Org. Chem., 2006, 71(19): 7185.
[20] Ramalingam V, Domaradzki M E, Jang S, Muthyala R S. Org. Lett., 2008, 10(15): 3315.
[21] Al-Sayah M H, Branda N R. Thermochim. Acta, 2010, 503: 28.
[22] Amendola V, Bergamaschi G, Boiocchi M, Fabbrizzi L, Milani M. Chem. Eur. J., 2010, 16(14): 4368.
[23] Rostami A, Wei C J, Guérin G, Taylor M S. Angew. Chem. Int. Ed., 2011, 50(9): 2059.
[24] Jin C, Zhang M, Deng C, Guan Y, Gong J, Zhu D, Pan Y, Jiang J, Wang L. Tetrahedron Lett., 2013, 54(8): 796.
[25] Gaeta C, Talotta C, Della Sala P, Margarucci L, Casapullo A, Neri P. J. Org. Chem., 2014, 79(8): 3704.
[26] Jin C, Zhang M, Wu L, Guan Y, Pan Y, Jiang J, Lin C, Wang L. Chem. Commun., 2013, 49(20): 2025.
[27] Elmes R B, Turner P, Jolliffe K A. Org. Lett., 2013, 15(22): 5638.
[28] Davis J T, Gale P A, Okunola O A, Prados P, Iglesias-Sanchez J C, Torroba T, Quesada R. Nat. Chem., 2009, 1(2): 138.
[29] Busschaert N, Wenzel M, Light M E, Iglesias-Hernandez P, Perez-Tomas R, Gale P A. J. Am. Chem. Soc., 2011, 133(35): 14136.
[30] Busschaert N, Kirby I L, Young S, Coles S J, Horton P N, Light M E, Gale P A. Angew. Chem. Int. Ed., 2012, 51(18): 4426.
[31] Lim N C, Morton M D, Jenkins H A, Brückner C. J. Org. Chem., 2003, 68(24): 9233.
[32] Onaran M B, Comeau A B, Seto C T. J. Org. Chem., 2005, 70(26): 10792.
[33] Sanna E, Martinez L, Rotger C, Blasco S, Gonzalez J, Garcia-Espana E, Costa A. Org. Lett., 2010, 12(17): 3840.
[34] Ni M, Guan Y, Wu L, Deng C, Hu X, Jiang J, Lin C, Wang L. Tetrahedron Lett., 2012, 53(47): 6409.
[35] 魏梅莹(Wei M Y), 李少光(Li S G), 贾传东(Jia C D), 吴彪(Wu B). 高等学校化学学报(Chem. Res. Chin. Univ.), 2011, 32(9): 1939.
[36] Frontera A, Orell M, Garau C, Quiñonero D, Molins E, Mata I, Morey J. Org. Lett., 2005, 7(8): 1437.
[37] Ambrosi G, Formica M, Fusi V, Giorgi L, Macedi E, Micheloni M, Paoli P, Pontellini R, Rossi P. Chem. Eur. J., 2011, 17(5): 1670.
[38] Lopez C, Sanna E, Carreras L, Vega M, Rotger C, Costa A. Chem. Asian J., 2013, 8: 84.
[39] Albrecht T, Dickmeiss G, Acosta C F, Rodríguez-Escrich C, Davis R L, Jørgensen K A. J. Am. Chem. Soc., 2012, 134: 2543.
[40] Su Y, Ling J B, Zhang S, Xu P F. J. Org. Chem., 2013, 78: 11053.
[41] Ling J B, Su Y, Zhu H L, Wang G Y, Xu P F. Org. Lett., 2012, 14: 1090.
[42] Yang W, Du D M. Org. Lett., 2010, 12: 5450.
[43] Zhao B L, Du D M. RSC Advances, 2014, 4: 27346.
[44] Zhao B L, Du D M. Org. Biomol. Chem., 2014, 12: 1585.

[1] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[2] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[3] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[4] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[5] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[6] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[7] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[8] 潘梅, 韦张文, 徐耀维, 苏成勇. 配位超分子自组装[J]. 化学进展, 2017, 29(1): 47-74.
[9] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[10] 伍宏伟, 陈亚运, 饶才辉, 刘传祥*. 含CH基的阴离子受体[J]. 化学进展, 2016, 28(10): 1501-1514.
[11] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[12] 李敏睿, 郭永亮, 杨保平, 郭军红, 崔锦峰. 基于脲衍生物阴离子识别的电化学检测[J]. 化学进展, 2015, 27(5): 559-570.
[13] 杨勇, 窦丹丹. 三重和四重氢键体系:设计、结构和应用[J]. 化学进展, 2014, 26(05): 706-726.
[14] 许良, 李勇军, 李玉良. 基于π体系的超分子功能材料的制备与应用研究[J]. 化学进展, 2014, 26(04): 487-501.
[15] 王赛, 吴斌, 段军飞, 方江邻*, 谌东中. 基于脲基氢键组装的功能超分子凝胶[J]. 化学进展, 2014, 26(01): 125-139.
阅读次数
全文


摘要