English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1645-1654 DOI: 10.7536/PC140634 前一篇   后一篇

• 综述与评论 •

金属有机框架材料的制备及在吸附分离CO2中的应用

姜宁1,2, 邓志勇*1, 王公应*1, 刘绍英1   

  1. 1. 中国科学院成都有机化学有限公司(成都有机化学研究所) 成都 610041;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2014-06-01 修回日期:2014-08-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 邓志勇, 王公应 E-mail:zhiyongdeng@cioc.ac.cn;gywang@cioc.ac.cn
  • 基金资助:

    国家科技支撑计划(No.2013BAC11B05)、四川省千人计划和成都人才计划资助

Preparation of Metal-Organic Frameworks and Application for CO2 Adsorption and Separation

Jiang Ning1,2, Deng Zhiyong*1, Wang Gongying*1, Liu Shaoying1   

  1. 1. Chengdu Organic Chemicals CO. LTD ( Chengdu Institute of Organic Chemistry), Chinese Academy of Sciences, Chengdu 610041, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-06-01 Revised:2014-08-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the National Key Technology R & D Program of China (No. 2013BAC11B05),the 1000 Talents Program of Sichuan and Talents Program of Chengdu

金属有机框架(MOFs)材料是当今的研究热点之一,是一类颇有潜力成为适用于CO2吸附和分离的重要材料。本文从MOFs的发展及其所具有的特点、MOFs用于CO2的吸附与分离所取得的突破性进展以及MOFs的传统合成及绿色制备方法三个方面展开论述。主要论述了MOFs适用于CO2吸附的原理,及其相对于传统的CO2吸附材料所具有的特点和优势,亦阐述了MOFs修饰与调变的方法。列出了MOFs用于单组分CO2吸附及CO2/CH4、CO2/N2吸附分离的结果。同时,针对传统MOFs制备方法不适宜大规模CO2捕集材料的生产,特别论述了机械化学合成法和新兴的潮湿矿物风化法,其均具有绿色化、无溶剂、低能耗和简单等特点,是一类较有研究价值和应用潜力的技术。随着温室效应和不可再生石化燃料的消耗等环境和能源问题的日趋严峻,研究及开发适用于CO2捕集与封存技术的MOFs新材料迫在眉睫,且任重而道远。

Metal-organic frameworks (MOFs) is one of research hot topic in material area, has potential to become an important material for CO2 adsorption and separation.Three points are introduced,including development and characteristics of MOFs,breakthrough progress of MOFs in CO2 adsorption and separation,preparation of MOFs by traditional synthesis and green methods. Mechanism of MOFs for CO2 adsorption and some special characteristics and advantages of MOFs compared with traditional adsorption materials are discussed. MOFs modification and improvement methods are introduced. Moreover, adsorption capacity and selectivity of MOFs for single-component CO2, CO2/CH4, CO2/N2 are given. Conventional MOFs preparation techniques could not satisfy the large-scale production for CO2 capture, so mechanical chemical synthesis and wet mineral weathering methods are discussed,which have some distinguishing features, such as greenization, solvent-free, low-energy, simplification and so on. Both of them are valuable for research and potentially practical technologies. With global warming and non-renewable fossil fuels consuming problems becoming more and more serious, studying and developing a series of MOFs materials to meet the requirements of carbon capture and storage(CCS) technology are extremely urgent and still had a lot of work to do.

Contents
1 Introduction
2 Development of metal-organic framework materials
2.1 MOFs
2.2 Classification of MOFs
2.3 Characteristics of MOFs
2.4 The effect of moisture on MOFs
3 Studied of MOFs materials in the CO2 adsorption and separation
3.1 Adsorption and separation of CO2 in single component
3.2 Adsorption and separation of CO2 from multi-components
4 MOFs conventional synthesis and green preparation methods
4.1 Conventional synthesis methods
4.2 Low energy consumption and green preparation methods
5 Conclusion

中图分类号: 

()

[1] Kember M R, Williams C K. J. Am. Chem. Soc., 2012, 134: 15676.
[2] Bustamante F, Orrego A F, Villegas S, Villa A L. Ind. Eng. Chem. Res., 2012, 51: 8945.
[3] Cör D, Škerget M, Knez ?. J. Chem. Eng. Data, 2014, 59: 653.
[4] 中华人民共和国国务院(State Council of the People's Republic of China), 中国应对气候变化国家方案(China's National Programme to Address Climate Change), 国发(2007)17号(2007-06-03).[2014-05-01] http://www.gov.cn/gongbao/content/2007/content_678918.htm
[5] Zhao Z X, Ma X L, Kasik A, Li Z, Lin Y S. Ind. Eng. Chem. Res., 2013, 52: 1102.
[6] McEwen J, Hayman J D, Yazaydin A O. Chem. Phys., 2013, 412: 72.
[7] Kong X Q, Deng H X, Yan F Y, Kim J, Swisher J A, Smit B, Yaghi O M, Reimer J A. Science, 2013, 341: 882.
[8] Zalomaeva O V, Chibiryaev A M, Kovalenko K A, Kholdeeva O A, Balzhinimaev B S, Fedin V P. J. Catal., 2013, 298: 179.
[9] Munn A S, Clarkson G J, Millange F, Dumont Y, Walton R I. Cryst. Eng. Comm., 2013, 15: 9679.
[10] Kent C A, Liu D M, Ito A, Zhang T, Brennaman M K, Meyer T J, Lin W B. J. Mater. Chem. A, 2013, 1: 14982.
[11] Feng Y F, Jiang H, Li S N, Wang J, Jing X Y, Wang Y R, Chen M. Colloids Surf. A: Physicochem. Eng. Aspects, 2013, 431: 87.
[12] Forgan R S, Smaldone R A, Gassensmith J J, Furukawa H, Cordes D B, Li Q W, Wilmer C E, Botros Y Y, Snurr R Q, Slawin A M Z, Stoddart J F. J. Am. Chem. Soc., 2012, 134: 406.
[13] Morris W, Volosskiy B, Demir S, Gándara F, McGrier P L, Furukawa H, Cascio D, Stoddart J F, Yaghi O M. Inorg. Chem., 2012, 51: 6443.
[14] Buser H J, Schwarzenbach D, Petter W, Ludi A. Inorg. Chem., 1977, 16(11): 2704.
[15] Kondo M, Yoshitomi T, Seki K, Matsuzaka H, Kitagawa S. Angew. Chem. Int. Ed., 1997, 36(16): 1725.
[16] Li H L, Eddaoudi M, O'Keeffe M, Yaghi O M. Nature, 1999, 402(18): 276.
[17] Gutiérrez I, Díaz E, Vega A, Ordóňez S. J. Chromatogr. A, 2013, 1274: 173.
[18] Park K S, Zheng N, Côté A P, Choi J Y, Huang R, Uribe-Romo F J, Chae H K, O'Keeffe M, Yaghi O M. Proc. Natl. Acad. Sci. U. S. A., 2006, 103(27): 10186.
[19] Chen Y F, Babarao R, Sandler S I, Jiang J W. Langmuir, 2010, 26(11): 8743.
[20] Morris W, Doonan C J, Yaghi O M. Inorg. Chem., 2011, 50: 6853.
[21] Kim K J, Li Y J, Kreider P B, Chang C H, Wannenmacher N, Thallapally P K, Ahn H G. Chem. Commun., 2013, 49: 11518.
[22] Zhang T T, Yang Y, Wang H T, Sun F X, Zhao X J, Jia J T, Liu J R, Guo W, Cui X Q, Gu J K, Zhu G S. Cryst. Growth Des., 2013, 13: 5261.
[23] Rood J A, Noll B C, Henderson K W. Inorg. Chem., 2006, 45: 5521.
[24] Martí-Gastaldo C, Antypov D, Warren J E, Briggs M E, Chater P A, Wiper P V, Miller G J, Khimyak Y Z, Darling G R, Berry N G, Rosseinsky M J. Nature Chem., 2014, 6: 343.
[25] Furukawa H, Cordova K E, O'Keeffe M, Yaghi O M. Science, 2013, 341: 974.
[26] Batten S R, Champness N R, Chen X M, Garcia-Martinez J, Kitagawa S, Öhrström L, O'Keeffe M, Suh M P, Reedijk J. Pure Appl. Chem., 2013, 85(8): 1715.
[27] Öhrström L. IUPC 44th World Chemistry Congress (Materials Science), Istanbul. 2013. 1371.
[28] Gassensmith J J, Furukawa H, Smaldone R A, Forgan R S, Botros Y Y, Yaghi O M, Stoddart J F. J. Am. Chem. Soc., 2011, 133: 15312.
[29] Kitagawa S, Kitaura R, Noro S I. Angew. Chem. Int. Ed., 2004, 43: 2334.
[30] Banerjee R, Phan A, Wang B, Knobler C, Furukawa H, O'Keeffe M, Yaghi O M. Science, 2008, 319: 939.
[31] Grzesiak A L, Uribe F J, Ockwig N W, Yaghi O M, Matzger A J. Angew. Chem. Int. Ed., 2006, 45: 2553.
[32] Deng H X, Grunder S, Cordova K E, Valente C, Furukawa H, Hmadeh M, Gándara F, Whalley A C, Liu Z, Asahina S, Kazumori H, O'Keeffe M, Terasaki O, Stoddart J F, Yaghi O M. Science, 2012, 336: 1018.
[33] Yaghi O M, Li Q W. MRS Bull., 2009, 34: 682.
[34] Kaye S S, Dailly A, Yaghi O M, Long J R. J. Am. Chem. Soc., 2007, 129: 14176.
[35] Jiang H L, Liu B, Lan Y Q, Kuratani K, Akita T, Shioyama H, Zong F Q, Xu Q. J. Am. Chem. Soc., 2011, 133: 11854.
[36] Nijkamp M G, Raaymakers J E M J, van Dillen A J, de Jong K P. Appl. Phys. A, 2001, 72: 619.
[37] Furukawa H, Ko N, Go Y B, Aratani N, Choi S B, Choi E, Yazaydin Ö, Snurr R Q, O'Keeffe M, Kim J, Yaghi O M. Science, 2010, 329: 424.
[38] Farha O K, Eryazici I, Jeong N C, Hauser B G, Wilmer C E, Sarjeant A A, Snurr R Q, Nguyen S B T, Yazayd?n A Ö, Hupp J T. J. Am. Chem. Soc., 2012, 134: 15016.
[39] Choi K M, Jeon H J, Kang J K, Yaghi O M. J. Am. Chem. Soc., 2011, 133: 11920.
[40] Fracaroli A M, Furukawa H, Suzuki M, Dodd M, Okajima S, Gándara F, Reimer J A, Yaghi O M. J. Am. Chem. Soc., 2014, 136: 8863.
[41] Furukawa H, Gándara F, Zhang Y B, Jiang J C, Queen W L, Hudson M R, Yaghi O M. J. Am. Chem. Soc., 2014, 136: 4369.
[42] Finsy V, Ma L, Alaerts L, Vos D E D, Baron G V, Denayer J F M. Microporous Mesoporous Mater., 2009, 120: 221.
[43] Millward A R, Yaghi O M. J. Am. Chem. Soc., 2005, 127, 17998.
[44] Saha D, Bao Z B, Jia F, Deng S G. Environ. Sci. Technol., 2010, 44(5): 1820.
[45] Farha O K, Yazaydn A O, Eryazici I, Malliakas C D, Hauser B G, Kanatzidis M G, Nguyen S T, Snurr R Q, Hupp J T, Nature Chem., 2010, 2: 944.
[46] Mu B, Schoenecker P M, Walton K S. J. Phys. Chem. C, 2010, 114: 6464.
[47] Llewellyn P L, Bourrelly S, Serre C, Vimont A, Daturi M, Hamon L, Weireld G D, Chang J S, Hong D Y, Hwang Y K, Jhung S H, Férey G. Langmuir, 2008, 24: 7245.
[48] Surblé S, Millange F, Serre C, Düren T, Latroche M, Bourrelly S, Llewellyn P L, Férey G. J. Am. Chem. Soc., 2006, 128: 14889.
[49] Volkringer C, Loiseau T, Haouas M, Taulelle F, Popov D, Burghammer M, Riekel C, Zlotea C, Cuevas F, Latroche M, Phanon D, Knöfelv C, Llewellyn P L, Férey G. Chem. Mater., 2009, 21: 5783.
[50] Dybtsev D N, Chun H, Yoon S H, Kim D, Kim K. J. Am. Chem. Soc., 2004, 126: 32.
[51] Nune S K, Thallapally P K, Dohnalkova A, Wang C M, Liuc J, Exarhosc G J. Chem. Commun., 2010, 46: 4878.
[52] Phan A, Doonan C J, Uribe-romo F J, Knobler C B, O'Keeffe M, Yaghi O M. Acc. Chem. Res., 2010, 43(1): 58.
[53] Liang Z J, Marshall M, Chaffee A L. Energy Fuels, 2009, 23: 2785.
[54] Huang Y T, Qin W P, Li Z, Li Y W. Dalton Trans., 2012, 41: 9283.
[55] Perez E V, Balkus K J, Ferraris J P, Musselman I H. J. Membrane Sci., 2009, 328: 165.
[56] Bao Z B, Yu L, Ren Q L, Lu X Y, Deng S G. J. Colloid Interface Sci., 2011, 353: 549.
[57] Banerjee R, Furukawa H, Britt D, Knobler C, O'Keeffe M, Yaghi O M. J. Am. Chem. Soc., 2009, 131: 3875.
[58] Wang B, Côté A P, Furukawa H, O'Keeffe M, Yaghi O M. Nature, 2008, 453: 207.
[59] Cavenati S, Grande C A, Rodrigues A E. Ind. Eng. Chem. Res., 2008, 47: 6333.
[60] Mu B, Li F, Walton K S. Chem. Commun., 2009, 2493.
[61] Bagabas A A, Frasconi M, Iehl J, Hauser B, Farha O K, Hupp J T, Hartlieb K J, Botros Y Y, Stoddart J F. Inorg. Chem., 2013, 52: 2854.
[62] Surblé S, Millange F, Serre C, Düren T, Latroche M, Bourrelly S, Llewellyn P L, Férey G. J. Am. Chem. Soc., 2006, 128: 14889.
[63] Hao X R, Wang X L, Shao K Z, Yang G S, Su Z M, Yuan G. CrystEngComm, 2012, 14: 5596.
[64] McKinstry C, Cussen E J, Fletcher A J, Patwardhan S V, Sefcik J. Cryst. Growth Des., 2013, 13: 5481.
[65] Sarawade P, Tan H, Polshettiwar V. ACS Sustainable Chem. Eng., 2013, 1: 66.
[66] Tranchemontagne D J, Hunt J R, Yaghi O M. Tetrahedron, 2008, 64: 8553.
[67] Bourne S A, Kilkenny M, Nassimbeni L R. J. Chem. Soc., Dalton Trans., 2001, 1176.
[68] Pichon A, James S L. CrystEngComm, 2008, 10: 1839.
[69] Pichon A, Lazuen-Garay A, James S L. CrystEngComm, 2006, 8: 211.
[70] Yuan W B, Garay A L, Pichon A, Clowes R, Wood C D, Cooper A I, James S L. CrystEngComm, 2010, 12: 4063.
[71] Friš D? i D? T, Fábián L. CrystEngComm, 2009, 11: 743.
[72] Friš D? i D? T, Reid D G, Halasz I, Stein R S, Dinnebier R E, Duer M J. Angew. Chem. Int. Ed., 2010, 49: 712.
[73] Yuan W B, Friš D? i D? T, Apperley D, James S L. Angew. Chem. Int. Ed., 2010, 122: 4008.
[74] Beldon P J, Fábián L, Stein R S, Thirumurugan A, Cheetham A K, Friš D? i D? T. Angew. Chem. Int. Ed., 2010, 49: 9640.
[75] Qi F, Stein R S, Friš D? i D? T. Green Chem., 2014, 16: 121.

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[3] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[4] 范倩倩, 温璐, 马建中. 无铅卤系钙钛矿纳米晶:新一代光催化材料[J]. 化学进展, 2022, 34(8): 1809-1814.
[5] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[6] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[9] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[10] 赵洁, 邓帅, 赵力, 赵睿恺. 湿气源吸附碳捕集: CO2/H2O共吸附机制及应用[J]. 化学进展, 2022, 34(3): 643-664.
[11] 尹晓庆, 陈玮豪, 邓博苑, 张佳路, 刘婉琪, 彭开铭. 超润湿膜在乳化液破乳中的应用及作用机制[J]. 化学进展, 2022, 34(3): 580-592.
[12] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[13] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 吴明明, 林凯歌, 阿依登古丽·木合亚提, 陈诚. 超浸润光热材料的构筑及其多功能应用研究[J]. 化学进展, 2022, 34(10): 2302-2315.