English
新闻公告
More
化学进展 2014, Vol. 26 Issue (12): 2007-2018 DOI: 10.7536/PC140627 前一篇   后一篇

• 综述与评论 •

混合基质水处理膜:材料、制备与性能

董航1, 张林*1, 陈欢林1, 高从堦1,2   

  1. 1. 生物质化工教育部重点实验室 浙江大学化学工程与生物工程学院 杭州 310027;
    2. 杭州水处理技术研究开发中心 杭州 310012
  • 收稿日期:2014-06-01 修回日期:2014-09-01 出版日期:2014-12-15 发布日期:2014-12-19
  • 通讯作者: 张林 E-mail:linzhang@zju.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2015CB655300)和国家自然科学基金项目(No. 21076176)资助

Mixed-Matrix Membranes for Water Treatment:Materials, Synthesis and Properties

Dong Hang1, Zhang Lin*1, Chen Huanlin1, Gao Congjie1,2   

  1. 1. Key Laboratory of Biomass Chemical Engineering, Ministry of Education, College of Chemical and Biological Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Hangzhou Water Treatment Technology Development Center, Hangzhou 310012, China
  • Received:2014-06-01 Revised:2014-09-01 Online:2014-12-15 Published:2014-12-19
  • Supported by:

    The work was supported by the National Basic Research Program of China (973 Program) (No. 2015CB655300) and the National Natural Science Foundation of China (No. 21076176)

以反渗透、纳滤为代表的膜技术已广泛应用于海水和苦咸水脱盐等水处理过程.通过将纳米颗粒添加到传统复合膜基质中,可以制备具有高分离性能和耐污染性的新型膜材料.混合基质膜结合了无机材料及有机聚合物各自的优点,是新型水处理膜材料的发展方向.本文综述了添加无机纳米颗粒的混合基质反渗透、纳滤及正渗透膜的研究进展,详细讨论了不同类型纳米材料的性质和功能,分析了表面有机改性对改善纳米材料分散性以及与聚合物基质相容性的作用,探讨了纳米材料添加方式和膜制备方法对膜结构和性能的影响.在此基础上,进一步探究了混合基质膜的成膜及分离机理,归纳了目前研究中存在的主要问题,并对未来水处理膜材料的研发方向提出了建议.

Reverse osmosis (RO) and nanofiltration (NF) are widely used in many water treatment processes, such as seawater and brackish water desalination. Membranes with improved separation performance and anti-fouling properties can be prepared by incorporating nanoparticles into membrane matrix. A number of nanomaterials can serve as potential water transport channels and modify the structure and surface properties of the membrane thin film layers. Mixed-matrix membranes (MMMs) can benefit from the high performance of both the organic matrix and inorganic fillers, which are believed to be the next generation of novel membrane materials. Recent advances of the nanoparticle-filled RO, NF and forward osmosis (FO) MMMs are reviewed in this paper. The effects of nanomaterials with various properties on membrane structure and separation performance are discussed, including zeolites, nanotubes, mesoporous materials, pure metal, metallic oxides, graphene oxide and aquaporin. The dispersibility of nanofillers in MMMs and their compatibility with polymer matrix can be improved by surface modification. Different methods of nanoparticle addition and membrane preparation are also illustrated in detail. Based on the analysis of the recent works, the membrane formation and separation mechanisms are explored and the main problems of membrane synthesis and application are summarized. Finally, the future development of RO, NF and FO MMMs for water treatment process is suggested.

Contents
1 Introduction
2 Mixed-matrix reverse osmosis membranes
2.1 Different types of nanomaterials
2.2 Modification of nanomaterials
2.3 Adding methods of nanomaterials
3 Mixed-matrix nanofiltration membranes
3.1 Interfacial polymerization
3.2 Phase inversion
4 Mixed-matrix forward osmosis membranes
5 Conclusion and outlook

中图分类号: 

()

[1] 汤蓓蓓(Tang B B), 徐铜文(Xu T W), 武培怡(Wu P Y). 化学进展(Progress in Chemistry), 2007, 19: 1428.
[2] 吴礼光(Wu L G), 周勇(Zhou Y), 张林(Zhang L), 陈欢林(Chen H L), 高从堦(Gao C J). 化学进展(Progress in Chemistry), 2008, 20: 1216.
[3] Qiu S, Wu L, Zhang L, Chen H, Gao C. J. Appl. Polym. Sci., 2009, 112: 2066.
[4] Qin J, Lin S, Song S, Zhang L, Chen H. ACS Appl. Mater. Interfaces, 2013, 5: 6649.
[5] Xu G R, Wang J N, Li C J. Desalination, 2013, 328: 83.
[6] Kulprathipanja S, Neuzil R W, Li N N. US 4740219, 1988.
[7] 艾晓莉(Ai X L), 胡小玲(Hu X L). 化学进展(Progress in Chemistry), 2004: 654.
[8] Qu X Y, Dong H, Zhou Z J, Zhang L, Chen H L. Ind. Eng. Chem. Res., 2010, 49: 7504.
[9] Qiu S, Wu L, Shi G, Zhang L, Chen H, Gao C. Ind. Eng. Chem. Res., 2010, 49: 11667.
[10] Jeong B H, Hoek E M V, Yan Y S, Subramani A, Huang X F, Hurwitz G, Ghosh A K, Jawor A. J. Membr. Sci., 2007, 294: 1.
[11] Lind M L, Ghosh A K, Jawor A, Huang X F, Hou W, Yang Y, Hoek E M V. Langmuir, 2009, 25: 10139.
[12] Lind M L, Jeong B H, Subramani A, Huang X F, Hoek E M V. J. Mater. Res., 2009, 24: 1624.
[13] Lind M L, Suk D E, Nguyen T V, Hoek E M V. Environ. Sci. Technol., 2010, 44: 8230.
[14] Fathizadeh M, Aroujalian A, Raisi A. J. Membr. Sci., 2011, 375: 88.
[15] Kong C L, Shintani T, Tsuru T. New J. Chem., 2010, 34: 2101.
[16] Zhu B, Zou L, Doherty C M, Hill A J, Lin Y S, Hu X, Wang H, Duke M. J. Mater. Chem., 2010, 20: 4675.
[17] Li D, He L, Dong D, Forsyth M, Wang H. Asia-Pac. J. Chem. Eng., 2012, 7: 434.
[18] Huang H, Qu X, Ji X, Gao X, Zhang L, Chen H, Hou L. J. Mater. Chem. A, 2013, 1: 11343.
[19] Noy A, Park H G, Fornasiero F, Holt J K, Grigoropoulos C P, Bakajin O. Nano Today, 2007, 2: 22.
[20] Goh P S, Ismail A F, Ng B C. Desalination, 2013, 308: 2.
[21] Ratto T V, Holt J K, Szmodis A W. US 7993524, 2010.
[22] Corry B. J. Phys. Chem. B, 2008, 112: 1427.
[23] Song C, Corry B. J. Phys. Chem. B, 2009, 113: 7642.
[24] Chan W F, Chen H Y, Surapathi A, Taylor M G, Hao X H, Marand E, Johnson J K. ACS Nano, 2013, 7: 5308.
[25] Baroña G N B, Lim J, Choi M, Jung B. Desalination, 2013, 325: 138.
[26] Zhao H, Zhou Z, Dong H, Zhang L, Chen H, Hou L. Sci. Rep., 2013, 3.
[27] Kim E S, Deng B. J. Membr. Sci., 2011, 375: 46.
[28] Yin J, Kim E S, Yang J, Deng B. J. Membr. Sci., 2012, 423/424: 238.
[29] Jadav G L, Singh P S. J. Membr. Sci., 2009, 328: 257.
[30] Jadav G L, Aswal V K, Singh P S. J. Colloid Interface Sci., 2010, 351: 304.
[31] Lee S Y, Kim H J, Patel R, Im S J, Kim J H, Min B R. Polym. Adv. Technol., 2007, 18: 562.
[32] Kim E S, Hwang G, El-Din M G, Liu Y. J. Membr. Sci., 2012, 394: 37.
[33] Yin J, Yang Y, Hu Z, Deng B. J. Membr. Sci., 2013, 441: 73.
[34] Zhang S, Qiu G, Ting Y P, Chung T S. Colloid Surf. A-Physicochem. Eng. Asp., 2013, 436: 207.
[35] Kwak S Y, Kim S H, Kim S S. Environ. Sci. Technol., 2001, 35: 2388.
[36] Kim S H, Kwak S Y, Sohn B H, Park T H. J. Membr. Sci., 2003, 211: 157.
[37] Bae T H, Tak T M. J. Membr. Sci., 2005, 266: 1.
[38] Bae T H, Kim I C, Tak T M. J. Membr. Sci., 2006, 275: 1.
[39] Zhang R X, Braeken L, Luis P, Wang X L, van Der Bruggen B. J. Membr. Sci., 2013, 437: 179.
[40] Saleh T A, Gupta V K. Sep. Purif. Technol., 2012, 89: 245.
[41] Kong C L, Koushima A, Kamada T, Shintani T, Kanezashi M, Yoshioka T, Tsuru T. J. Membr. Sci., 2011, 366: 382.
[42] 隋海心(Sui H X), 任罡(Ren G). 化学进展(Progress in Chemistry), 2004, 16: 145.
[43] Tang C Y, Zhao Y, Wang R, Helix-Nielsen C, Fane A G. Desalination, 2013, 308: 34.
[44] Zhao Y, Qiu C, Li X, Vararattanavech A, Shen W, Torres J, Hélix-Nielsen C, Wang R, Hu X, Fane A G, Tang C Y. J. Membr. Sci., 2012, 423/424: 422.
[45] Zhao Y, Qiu C Q, Li X S, Vararattanavech A, Shen W M, Torres J, Helix-Nielsen C, Wang R, Hu X, Fane A G, Tang C Y. J. Membr. Sci., 2012, 423: 422.
[46] Sint K, Wang B, Kral P. J. Am. Chem. Soc., 2008, 130: 16448.
[47] Cohen-Tanugi D, Grossman J C. Nano Lett., 2012, 12: 3602.
[48] Konatham D, Yu J, Ho T A, Striolo A. Langmuir, 2013, 29: 11884.
[49] Zhao S, Xue J, Kang W. J. Chem. Phys., 2013, 139.
[50] Zhao H, Wu L, Zhou Z, Zhang L, Chen H. Phys. Chem. Chem. Phys., 2013, 15: 9084.
[51] Choi W, Choi J, Bang J, Lee J H. ACS Appl. Mater. Interfaces, 2013, 5: 12510.
[52] Perreault F, Tousley M E, Elimelech M. Environ. Sci. Technol. Lett., 2013, 1: 71.
[53] Joshi R K, Carbone P, Wang F C, Kravets V G, Su Y, Grigorieva I V, Wu H A, Geim A K, Nair R R. Science, 2014, 343: 752.
[54] Mi B. Science, 2014, 343: 740.
[55] Wu H Q, Tang B B, Wu P Y. J. Membr. Sci., 2013, 428: 341.
[56] Kim S G, Chun J H, Chun B H, Kim S H. Desalination, 2013, 325: 76.
[57] Dong H, Qu X Y, Zhang L, Cheng L H, Chen H L, Gao C J. Desalin. Water Treat., 2011, 34: 6.
[58] 顾瑾(Gu J), 王安娜(Wang A N), 孙余凭(Sun Y P), 张林(Zhang L), 陈欢林(Chen H L). 化学工程(Chemical Engineering), 2012, 72.
[59] Zhang L, Shi G Z, Qiu S, Cheng L H, Chen H L. Desalin. Water Treat., 2011, 34: 19.
[60] Zhao H, Qiu S, Wu L, Zhang L, Chen H, Gao C. J. Membr. Sci., 2014, 450: 249.
[61] Shawky H A, Chae S R, Lin S, Wiesner M R. Desalination, 2011, 272: 46.
[62] Kim H J, Choi K, Baek Y, Kim D G, Shim J, Yoon J, Lee J C. ACS Appl. Mater. Interfaces, 2014, 6: 2826.
[63] Huang H, Qu X, Dong H, Zhang L, Chen H. RSC Advances, 2013, 3: 8203.
[64] 方彦彦(Fang Y Y), 李倩(Li Q), 王晓琳(Wang X L). 化学进展(Progress in Chemistry), 2012, 24: 863.
[65] Lee H S, Im S J, Kim J H, Kim H J, Kim J P, Min B R. Desalination, 2008, 219: 48.
[66] Mollahosseini A, Rahimpour A. Biofouling, 2013, 29: 537.
[67] Wu H Q, Tang B B, Wu P Y. J. Membr. Sci., 2013, 428: 425.
[68] Wu H, Tang B, Wu P. J. Phys. Chem. C, 2010, 114: 16395.
[69] Rajaeian B, Rahimpour A, Tade M O, Liu S M. Desalination, 2013, 313: 176.
[70] Shen J N, Yu C C, Ruan H M, Gao C J, Van Der Bruggen B. J. Membr. Sci., 2013, 442: 18.
[71] Roy S, Ntim S A, Mitra S, Sirkar K K. J. Membr. Sci., 2011, 375: 81.
[72] Sorribas S, Gorgojo P, Téllez C, Coronas J, Livingston A G. J. Am. Chem. Soc., 2013, 135: 15201.
[73] Soroko I, Livingston A. J. Membr. Sci., 2009, 343: 189.
[74] Sotto A, Boromand A, Balta S, Kim J, Van Der Bruggen B. J. Mater. Chem., 2011, 21: 10311.
[75] Pourjafar S, Rahimpour A, Jahanshahi M. J. Ind. Eng. Chem., 2012, 18: 1398.
[76] Rajesh S, Ismail A F, Mohan D R. RSC Advances, 2012, 2: 6854.
[77] Vatanpour V, Madaeni S S, Khataee A R, Salehi E, Zinadini S, Monfared H A. Desalination, 2012, 292: 19.
[78] Kim J, Sotto A, Chang J, Nam D, Boromand A, Van Der Bruggen B. Micropor. Mesopor. Mater., 2013, 173: 121.
[79] Rajesh S, Senthilkumar S, Jayalakshmi A, Nirmala M T, Ismail A F, Mohan D. Colloid Surf. A-Physicochem. Eng. Asp., 2013, 418: 92.
[80] Sotto A, Boromand A, Zhang R, Luis P, Arsuaga J M, Kim J, Van Der Bruggen B. J. Colloid Interface Sci., 2011, 363: 540.
[81] Daraei P, Madaeni S S, Ghaemi N, Salehi E, Khadivi M A, Moradian R, Astinchap B. J. Membr. Sci., 2012, 415: 250.
[82] Alam J, Dass L A, Ghasemi M, Alhoshan M. Polym. Compos., 2013, 34: 1870.
[83] Maheswari P, Prasannadevi D, Mohan D. High Perform. Polym., 2013, 25: 174.
[84] Kim E S, Liu Y, El-Din M G. J. Membr. Sci., 2013, 429: 418.
[85] Daraei P, Madaeni S S, Ghaemi N, Monfared H A, Khadivi M A. Sep. Purif. Technol., 2013, 104: 32.
[86] Vatanpour V, Madaeni S S, Moradian R, Zinadini S, Astinchap B. J. Membr. Sci., 2011, 375: 284.
[87] Barona G N B, Choi M, Jung B. J. Colloid Interface Sci., 2012, 386: 189.
[88] Zinadini S, Zinatizadeh A A, Rahimi M, Vatanpour V, Zangeneh H. J. Membr. Sci., 2014, 453: 292.
[89] Wu H Q, Tang B B, Wu P Y. J. Membr. Sci., 2014, 451: 94.
[90] Huang J, Wang H T, Zhang K S. Desalination, 2014, 336: 8.
[91] Sun G, Chung T S, Jeyaseelan K, Armugam A. RSC Advances, 2013, 3: 473.
[92] Sun G, Chung T S, Chen N, Lu X, Zhao Q. RSC Advances, 2013, 3: 9178.
[93] Li X, Wang R, Wicaksana F, Tang C, Torres J, Fane A G. J. Membr. Sci., 2014, 450: 181.
[94] 贾奇博(Jia Q B), 韩洪亮(Han H L), 刘必前(Liu B Q), 杨海军(Yang H J), 沈建权(Shen J Q). 化学通报(Chemistry), 2012: 771.
[95] 李刚(Li G), 李雪梅(Li X M), 柳越(Liu Y), 王铎(Wang D

[1] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[2] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[3] 杨世迎, 李乾凤, 吴随, 张维银. 铁基材料改性零价铝的作用机制及应用[J]. 化学进展, 2022, 34(9): 2081-2093.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[6] 占兴, 熊巍, 梁国熙. 从废水到新能源:光催化燃料电池的优化与应用[J]. 化学进展, 2022, 34(11): 2503-2516.
[7] 张静, 王定祥, 张宏龙. 高价锰、铁去除水中新兴有机污染物[J]. 化学进展, 2021, 33(7): 1201-1211.
[8] 李立清, 吴盼旺, 马杰. 双网络凝胶吸附剂的构建及其去除水中污染物的应用[J]. 化学进展, 2021, 33(6): 1010-1025.
[9] 胡豪, 何云鹏, 杨水金. 多酸@金属-有机骨架材料的制备及其在废水处理中的应用[J]. 化学进展, 2021, 33(6): 1026-1034.
[10] 董秀婷, 张文, 赵颂, 刘新磊, 王宇新. 金属有机骨架材料的复合成型[J]. 化学进展, 2021, 33(12): 2173-2187.
[11] 李超, 乔瑶雨, 李禹红, 闻静, 何乃普, 黎白钰. MOFs/水凝胶复合材料的制备及其应用研究[J]. 化学进展, 2021, 33(11): 1964-1971.
[12] 李霞, 马红艳, 聂晓娟, 刘旭, 卞成明, 谢龙. 星形环糊精聚合物的制备及其应用[J]. 化学进展, 2020, 32(7): 935-942.
[13] 刘阳, 张新波, 赵樱灿. 二维MoS2纳米材料及其复合物在水处理中的应用[J]. 化学进展, 2020, 32(5): 642-655.
[14] 王均凤, 王毅霖, 张晓飞, 王道广, 李亚辉, 何宏艳, 李兴春, 张锁江. 炼化反渗透浓水中有机物处理技术[J]. 化学进展, 2020, 32(10): 1462-1481.
[15] 张赛晖, 王悦, 柳开鹏, 王捷. 聚电解质型正渗透汲取液[J]. 化学进展, 2019, 31(7): 969-979.