English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1712-1719 DOI: 10.7536/PC140547 前一篇   后一篇

• 综述与评论 •

微/纳米马达在生物传感中的应用

于晓平, 吴洁*, 鞠熀先   

  1. 南京大学生命分析化学国家重点实验室 南京 210093
  • 收稿日期:2014-05-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 吴洁 E-mail:wujie@nju.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2010CB732405)、 国家自然科学基金项目(No. 21105046)、 教育部博士点基金项目(No. 20110091120012)和江苏省自然科学基金项目(No. BK2011552)资助

The Application of Micro/Nanomotor in Biosensing

Yu Xiaoping, Wu Jie*, Ju Huangxian   

  1. State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2014-05-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    This work was supported by the National Basic Research Program of China (No. 2010CB732405), the National Natural Science Foundation of China (No. 21105046), the Ph.D. Programs Foundation of Ministry of Education of China (No. 20110091120012), and the Natural Science Foundation of Jiangsu Province (No. BK2011552)

微/纳米马达是近年来发展的一种可自主运动的新型微/纳米材料,它制备简单、形态多样、可批量化生产,已逐渐应用于生物样品分析及药物运输等领域。由于生物样品成分复杂,传统检测常常需要多步清洗和分离,操作繁琐、耗时较长。微/纳米马达具有自主运动的特性,通过表面生物功能化,可制备成动态的微型生物传感器,实现多种生物分子如核酸、蛋白质、糖蛋白等的实时、快速和灵敏检测。本文总结了近几年微/纳米马达的发展及其在生物传感中的应用,并展望了其在生物分析中的应用前景。

Micro/nanomotors are newly developed micro/nanoscale autonomous materials, and have been gradually applied in many fields such as bioanalysis and drug delivery owing to the advantages of simple preparation and mass production. By template-based electrodeposition and mechanical etching, micro/nanomotors in different shapes and compositions have been prepared. The most developed micro/nanomotors are asymmetric nanowire and microsphere and conical tube based motors. The motor based micro/nano biosensors can be prepared easily by functionalizing the motors with specific bioreceptors. Due to the complexity of the biological sample composition, traditional detection methods are often time-consuming and complicated because of multi cleaning and separation steps. However, benefiting from the unique property of autonomic movement, the motor based micro/nano biosensors can recognize, isolate and enrich target biomolecules from untreated sample solutions autonomously, hence realize the rapid, sensitive and in situ detection of target biomolecules such as DNA, protein, cell and so on. Generally, the micro/nanomotors can be propelled by chemical and field energies, for example, chemical reactions, magnetic field and ultrasound. In this review, we briefly introduce the motion mechanism of different micro/nanomotors, summarize the recent advances of micro/nanomotor-based biosensing applications in protein, DNA and cell detection and drug delivery, and prospect the future development of artificial micro/nanomotors.

Contents
1 Introduction
2 The mechanism of micro/nanomotors
2.1 Chemically powered micro/nanomotors
2.2 Magnetically and ultrasound propelled micro/nanomotors
3 The application of micro/nanomotor in biosensing
3.1 Micro/nanomotors for isolation and detection of protein
3.2 Micro/nanomotors for isolation and detection of DNA
3.3 Micro/nanomotors for isolation and enrichment of bacterial and cancer cells
3.4 Micro/nanomotors for immunoassay
3.5 Micro/nanomotors for drug delivery
4 Conclusions and outlook

中图分类号: 

()

[1] 周继平(Zhou J P). 医学信息手术学分册(Medical Information Operations Sciences Fascicule),2006,19(2): 60.
[2] 吴魏霞(Wu W X). 北京印刷学院学报(Journal of Beijing Institute of Graphic Communication), 2012,20(2): 64.
[3] 王志松(Wang Z S). 自然杂志(Chinese Journal of Nature),2006,28(3): 160.
[4] Paxton W F, Baker P T, Kline T R, Wang Y, Mallouk T E, Sen A. J. Am. Chem. Soc., 2006, 128: 14881.
[5] Gao W, Sattayasamitsathit S, Manesh K M, Weihs D, Wang J. J. Am. Chem. Soc., 2010, 132: 14403.
[6] Demirok U K, Laocharoensuk R, Manesh K M, Wang J. Angew. Chem. Int. Ed., 2008, 47: 9349.
[7] Pavlick R A, Sengupta S, McFadden T, Zhang H, Sen A. Angew. Chem. Int. Ed., 2011, 123: 9546.
[8] Wilson D A, Nolte R J M, van Hest J C M. Nat. Chem., 2012, 4: 268.
[9] Gao W, Pei A, Feng X M, Hennessy C, Wang J. J. Am. Chem. Soc., 2013, 135: 998.
[10] Huang C X, Shen X T. Chem. Commun., 2014, 50: 2646.
[11] Simmchen J, Baeza A, Ruiz D, Esplandiu M J, Vallet-Regí M. Small, 2012, 8: 2053.
[12] Gao W, Sattayasamitsathit S, Uygun A, Pei A, Ponedal A, Wang J. Nanoscale, 2012, 4: 2447.
[13] Kuralay F, Sattayasamitsathit S, Gao W, Uygun A, Katzenberg A, Wang J. J. Am. Chem. Soc., 2012, 134: 15217.
[14] Guix M, Orozco J, Garcia M, Gao W, Sattayasamitsathit S, MerkociA, Escarpa A, Wang J. ACS Nano, 2012, 6: 4445.
[15] Mei Y F, Solovev A A, Sanchez S, Schmidt O G. Chem. Soc. Rev., 2011, 40: 2109.
[16] Tottori S, Zhang L, Qiu F M, Krawczyk K K, Franco-Obregón A, Nelson B J. Adv. Mater., 2012, 24: 811.
[17] Zhang L, Abbott J J, Dong L, Peyer K E, Kratochvil B E, Zhang H, Bergeles C, Nelson B J. Nano Lett., 2009, 9: 3663.
[18] Ghosh A, Fischer P. Nano Lett., 2009, 9: 2243.
[19] Mirkovic T, Foo M L, Arsenault A C, Fournier-Bidoz S, Zacharia N S, Ozin G A. Nat. Nanotech., 2007: 565.
[20] Dong B, Zhou T, Zhang H, Li C Y. ACS Nano, 2013, 7: 5192.
[21] Sundararajan S, Lammert P E, Zudans A W, Crespi V H, Sen A. Nano Lett., 2008, 8: 1271.
[22] Wu J, Balasubramanian S, Kagan D, Manesh K M, Campuzano S, Wang J. Nat. Commun., 2010, 1: 36.
[23] Wang J, Gao W. ACS Nano, 2012, 6: 5745.
[24] Patra D, Sengupta S, Duan W, Zhang H, Pavlick R, Sen A. Nanoscale, 2013, 5: 1273.
[25] Baraban L, Harazim S M, Sanchez S, Schmidt O G. Angew. Chem. Int. Ed., 2013, 52: 5552.
[26] Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh K M, Flechsig G U, Wang J. J. Am. Chem. Soc., 2009, 131: 12082.
[27] Burdick J, Laocharoensuk R, Wheat P M, Posner J D, Wang J. J. Am. Chem. Soc., 2008, 130: 8164.
[28] Zhang L, Petit T, Lu Y, Kratochvil B E, Peyer K E, Pei R, Lou J, Nelson B J. ACS Nano, 2010, 4: 6228.
[29] Zhao G J, Seah T H, Pumera M. Chem. Eur. J., 2011, 17: 12020.
[30] Cobbold R S C. New York: Oxford University Press , 2007.
[31] Wang W, Castro L A, Hoyos M, Mallouk T E. ACS Nano, 2012, 6: 6122.
[32] Garcia-Gradilla X, Orozco J, Sattayasamitsathit S, Soto F, Kuralay F, Pourazary A, Katzenberg A, Gao W, Shen Y F, Wang J. ACS Nano, 2013, 7: 9232.
[33] Gibbs J G, Zhao Y P. Appl. Phys. Lett., 2009, 94: 163104.
[34] Mei Y F, Huang G S, Solovev A A, Urena E B, Monch I, Ding F, Reindl T, Fu R K Y, Chu P K, Schmidt O G. Adv. Mater., 2008, 20: 4085.
[35] Solovev A A, Mei Y F, Urena E B, Huang G S, Schmidt O G. Small, 2009, 5: 1688.
[36] Manesh K M, Yuan R, Clark M, Kagan D, Balasubramanian S, Wang J. ACS Nano, 2010, 4: 1799.
[37] Liu R, Sen A. J. Am. Chem. Soc., 2011, 133: 20064.
[38] Gao W, Sattayasamitsathit S, Orozco J, Wang J. J. Am. Chem. Soc., 2011, 133: 11862.
[39] Hong Y Y, Diaz M, Cordova-Figueroa U M, Sen A. Adv. Funct. Mater., 2010, 20: 1568.
[40] Ibele M, Mallouk T E, Sen A. Angew. Chem. Int. Ed., 2009, 48: 3308.
[41] McDermott J J, Kar A, Daher M, Klara S, Wang G, Sen A, Velegol D. Langmuir, 2012, 28: 15491.
[42] Jones P H, Palmisano F, Bonaccorso F, Gucciardi P G, Calogero G, Ferrari A C, Marago O M. ACS Nano, 2009, 3: 3077.
[43] Ghosh A, Fischer P. Nano Lett., 2009, 9: 2243.
[44] Pak O S, Gao W, Wang J, Lauga E. Soft Matter, 2011, 7: 8169.
[45] Paxton W F, Kistler K C, Olmeda C C, Sen A, St Angelo S K, Cao Y Y, Mallouk T E, Lammert P E, Crespi V H. J. Am. Chem. Soc., 2004, 126: 13424.
[46] Gao W, Uygun A, Wang J. J. Am. Chem. Soc., 2012, 134: 897.
[47] Gao W, Pei A, Dong R F, Wang J. J. Am. Chem. Soc., 2014, 136: 2276.
[48] Gao W, Pei A, Wang J. ACS Nano, 2012, 6: 8432.
[49] Mou F Z, Chen C R, Ma H R, Yin Y X, Wu Q Z, Guan J G. Angew. Chem. Int. Ed., 2013, 52: 1.
[50] Orozco J, Cortés A, Cheng G Z, Sattayasamitsathit S, Gao W, Feng X M, Shen Y F, Wang J. J. Am. Chem. Soc., 2013, 135: 5336.
[51] Campuzano S, Orozoc J, Kagan D, Guix M, Gao W, Sattayasamitsathit S, Claussen J C, Merkoci A, Wang J. Nano Lett., 2012, 12: 396.
[52] Wang Y, Fei S, Byun Y M, Lammert P E, Crespi V H, Sen A. J. Am. Chem. Soc., 2009, 131: 9926.
[53] Orozco J, Campuzano S, Kagan D, Zhou M, Gao W, Wang J. Anal. Chem., 2011, 83: 7962.
[54] Piunno P A E, Krull U J, Hudson R H E, Damha M J, Cohen H. Anal. Chem., 1995, 67: 2635.
[55] Ferguson J A, Boles T C, Adams C P, Walt D R. Nat. Biotechnol., 1996, 14: 1681.
[56] Wang J. Nucl. Acids. Res., 2000, 28: 3011.
[57] Gooding J J. Electroanalysis, 2002, 14: 1149.
[58] Okahata Y. J. Am. Chem. Soc., 1992, 114: 8299.
[59] Duarte G R M, Price C W, Littlewood J L, Haverstick D M, Ferrance J P, Carrilho E, Landers J P. Analyst, 2010, 135: 531.
[60] Hiyama S, Inoue T, Shima T, Moritani Y, Suda T, Sutoh K. Small, 2008, 4: 410.
[61] Kagan D, Campuzano S, Balasubramanian S, Kuralay F, Flechsig G U, Wang J. Nano Lett., 2011, 11: 2083.
[62] Kagan D, Calvo-Marzal P, Balasubramanian S, Sattayasamitsathit S, Manesh K M, Flechsig G U, Wang J. J. Am. Chem. Soc., 2009, 131: 12082.
[63] Laurino P, Kikkeri R. Nano Lett., 2011, 11: 73.
[64] Guven B, Basaran-Akgul N, Temur E, Tamer U, Boyaci I H. Analyst, 2011, 136: 740.
[65] Balasubramanian S, Kagan D, Hu C M J, Campuzano S, Lobo-Castanon M J, Lim N, Kang D Y, Zimmerman M, Zhang L F, Wang J. Angew. Chem. Int. Ed., 2011, 50: 4161.
[66] Wang J. Biosens. Bioelectron., 2006, 21: 1887.
[67] Wu J, Fu Z F, Yan F, Ju H X. TrAC-Trend. Anal. Chem., 2007, 26: 679.
[68] Sergey M B, Wolfbeis O S. Chem. Rev., 2008, 108: 423.
[69] García M, Orozco J, Guix M, Gao W, Sattayasamitsathit S, Escarpa A, Merkoci A, Wang J. Nanoscale, 2013, 5: 1325.
[70] Yu X P, Li Y N, Wu J, Ju H X. Anal. Chem., 2014, 86: 4501.
[71] Solovev A A, Xi W, Gracias D H, Harazim S M, Deneke C, Sanchez S, Schmidt O G. ACS Nano, 2012, 6: 1751.
[72] Wu Z G, Wu Y J, He W P, Lin X K, Sun J M, He Q. Angew. Chem. Int. Ed., 2013, 52: 7000.
[73] Gao W, Kagan D, Pak O S, Clawson C, Campuzano S, Chuluun-Erdene E, Erik Shipton, Fullerton E E, Zhang L F, Lauga E, Wang J. Small, 2012, 8: 460.
[74] Kagan D, Benchimol M J, Claussen J C, Chuluun-Erdene E, Esener S, Wang J. Angew. Chem. Int. Ed., 2012, 51: 7519.

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[3] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[4] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[5] 彭倩, 张晶晶, 房新月, 倪杰, 宋春元. 基于表面增强拉曼光谱技术的心肌生物标志物检测[J]. 化学进展, 2022, 34(12): 2573-2587.
[6] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[7] 许惠凤, 董永强, 朱希, 余丽双. 新型二维材料MXene在生物医学的应用[J]. 化学进展, 2021, 33(5): 752-766.
[8] 孙亚芳, 周子平, 舒桐, 钱立生, 苏磊, 张学记. 多彩金纳米簇:从结构到生物传感和成像[J]. 化学进展, 2021, 33(2): 179-187.
[9] 杨爽, 杨贤鹏, 王宝俊, 王蕾. 基于核酸的纸基荧光生物传感器的设计及应用[J]. 化学进展, 2021, 33(12): 2309-2315.
[10] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[11] 张开宇, 高国伟, 李延生, 宋钰, 温永强, 张学记. DNA水凝胶在生物传感中的应用和发展[J]. 化学进展, 2021, 33(10): 1887-1899.
[12] 张晗, 丁家旺, 秦伟. 基于多肽识别的电化学生物传感技术[J]. 化学进展, 2021, 33(10): 1756-1765.
[13] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[14] 宫苗, 王晓英, 王晓宁. 血液肿瘤相关生物标志物的电化学传感检测[J]. 化学进展, 2019, 31(6): 894-905.
[15] 刘畅, 吴峰, 苏倩倩, 钱卫平. 贵金属多孔纳米结构的模板法制备及生物检测应用[J]. 化学进展, 2019, 31(10): 1396-1405.
阅读次数
全文


摘要

微/纳米马达在生物传感中的应用