English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1596-1608 DOI: 10.7536/PC140514 前一篇   后一篇

• 综述与评论 •

镁-过渡金属复合物正极材料

刘渝萍*1,2,3, 谢剑1, 李婷婷1, 邓玲1, 陈昌国1, 张丁非*2   

  1. 1. 重庆大学化学化工学院 重庆 400044;
    2. 重庆大学国家镁合金材料工程技术研究中心 重庆 400044;
    3. 重庆大学 材料科学工程学院博士后流动站 重庆 400044
  • 收稿日期:2014-05-01 修回日期:2014-06-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 刘渝萍, 张丁非 E-mail:liuliuyuping@163.com;zhangdingfei@cqu.edu.cn
  • 基金资助:

    国家973重大基础研究项目(No. 2013CB632200)、国家自然科学基金项目(No. 21273292)和重庆大学中央高校面上项目(No. CQDXWL-2012-026)资助

Development of Mg-Transition Metal Complex as Cathode Materials

Liu Yuping*1,2,3, Xie Jian1, Li Tingting1, Deng Ling1, Chen Changguo1, Zhang Dingfei*2   

  1. 1. College of Chemistry and Engineering, Chongqing University, Chongqing 400044, China;
    2. National Engineering Research Center for Magnesium Alloys, Chongqing University, Chongqing 400044, China;
    3. Post-Doctorial Research Station of Materials Engineering, Chongqing University, Chongqing 400044, China
  • Received:2014-05-01 Revised:2014-06-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Great Theoretic Research Project (No. 2013CB632200), the National Natural Science Foundation of China(No. 21273292) and Chongqing University Central College Fund(No. CQDXWL-2012-026)

高能量密度、大容量、高工作电压、低成本、环境友好的二次电池是未来储能电池技术的发展方向。高比能的镁离子电池(MIBs)是以镁或镁合金为负极的二次电池,是一种重要的有望用于电动汽车的新型绿色储能电池。镁离子电池发展缓慢的主要问题是镁离子在正极材料中扩散速度慢。因此,本文综述了五类晶体结构的镁-过渡金属复合物类型(包括一维隧道结构、二维层状结构、三维尖晶石结构、三维NASICON结构、三维橄榄石结构)、制备方法、电化学性能等,还阐述了镁离子在固体中扩散行为及提高扩散速度的措施,最后展望了镁离子电池正极材料镁-过渡金属复合物的重要研究方向。寻找高电压(大于3 V)、高比能量、高可逆性的正极材料和与其匹配的电解液是实现镁离子电池第三次突破的关键。我们希望本文有利于更深入地了解镁离子电池正极材料,促进镁离子电池的发展。

High energy density, high capacity, high work voltage, low cost, highly safe rechargeable battery is the future development directions of storage battery technology. High-energy density Mg ion battery (MIB) is rechargeable battery with Mg or Mg alloy as anode. Mg ion battery is the most promising and important new type of green storage battery applicable in electric vehicle. The slow diffusion of Mg ion in the cathode material is one reason for the slow development of Mg ion battery. Thus, in this paper, we review five types of crystal structured Mg-transition metal complex oxides with one-dimensional tunnel structure, two-dimensional layer structure, three-dimensional spinel structure, three-dimensional NASICON structure, three-dimensional olivine structure, the preparation method and the electrahemical properties. Further, we also illustrate the diffusion performance of Mg ion in the solid cathode and the measures to improve the slowness diffusion. Finally, we point out the possible research directions of Mg-transition metal complex as cathode materials for Mg ion batteries in the future. Searching for high-energy density, high-capacity, high-voltage cathode materials and the compatible electrolyte is the key to realizing the third breakthrough of the Mg ion battery. We hope that this paper is favorable for understanding the cathode materials of Mg ion battery, promoting the development of Mg ion battery.

Contents
1 Introduction
2 One-dimensional tunnel structure
3 Two-dimensional layer structure
3.1 Mg-Ni-O
3.2 Mg-Ti-O
3.3 Mg-V-O
4 Three-dimensional spinel structure
4.1 Mg-Mn-O
4.2 Mg-Co-O
4.3 Mg-Fe-O
5 Three-dimensional post-spinel structure
6 Three-dimensional NASICON structure
7 Three-dimensional olivine structure
7.1 Mg-Fe-P-O
7.2 Mg-V-P-O-F
7.3 Mg-Mn-Si-O
7.4 Mg-Fe-Si-O
7.5 Mg-Co-Si-O
7.6 Mg-Ni-Si-O
8 Mg diffusion in the solid cathode
9 Outlook

中图分类号: 

()

[1] 陶占良(Tao Z Z), 陈军(Chen J J). 科学通报(Chinese Science Bulletin), 2012, 57(27): 2545.
[2] 沈健(Shen J), 彭博(Peng B), 陶占良(Tao Z L), 陈军(Chen J). 化学进展(Progress in Chemistry), 2010, 22: 515.
[3] Kim H S, Arthur T S, Allred G D, Zajicek J, Newman J G, Rodnyansky A E, Oliver A G, Boggess W C, Muldoon J. Nature Communications, 2011, 8: 1.
[4] Pellion Technologies. Moving Beyond Lithium with Low-Cost, High-Energy, Rechargeable Magnesium Batteries, (2011-09). http://www.pelliontech.com/media.htm
[5] Yoo H D, Shterenberg I, Gofer Y, Gershinsky G, Pour N, Aurbach Doron. Energy& Environmental Science, 2013, 6: 2265.
[6] Liu B, Luo T, Mu G Y, Wang X F, Chen D, Shen G Z. ACS Nano, 2013, 7(9): 8051.
[7] Gershinsky G, Yoo H D, Gofer Y, Aurbach D. Langmuir, 2013, 29: 10964.
[8] Yagi S, Tanaka A, Ichitsubo T, Matsubara E. ECS Electrochemistry Letters, 2012, 1(2): D11.
[9] Gregory T D, Hoffman R J, Winterton R C. J. Electrochem. Soc., 1990, 137(3): 775.
[10] Aurbach D, Lu Z, Schechter A, Gofer Y, Gizbar H, Turgeman R, Cohen Y, Moshkovich M, Levi E. Nature, 2000, 407: 724.
[11] Yuan H T, Jiao L F, Cao J S, Liu X S, Zhao M, Wang Y M. J. Mater. Sci. Technol., 2004, 20(1): 41.
[12] NuLi Y N, Yang J, Li Y S, Wang J L. Chem. Commun., 2010, 46: 3794.
[13] Liang Y L, Feng R J, Yang S Q, Ma H, Liang J, Chen J, Adv. Mater., 2011, 23: 640.
[14] Levi E, Gofer Y, Aurbach D. Chem. Mater., 2010, 22: 860.
[15] Aurbach D, Suresh G S, Levi E, Aurbach D. Advanced Materials, 2007, 19: 4260.
[16] Johnson C S, Mansuetto M F, Thackeray M M. J. Electrochem. Soc., 1997, 144: 2279.
[17] Kumagai N, Komaba S, Sakai H. Journal of Power Sources, 2001, 97/98: 515.
[18] Ichitsubo T, Adachi T, Yagi S, Doi T. J. Mater. Chem., 2011, 21: 11764.
[19] Yagi S, Ichikawa Y, Yamada I, Dio T, Ichitsubo T, Matsubara E. Japanese Journal of Applied Physics, 2013, 52: 025501.
[20] 赵明(Zhao M), 焦丽芳(Jiao L F), 袁华堂(Yuan H T), 王伟(Wang W), 王永梅(Wang Y M). 南开大学学报(自然科学版)(Acta Scientiarum Naturalium Universitatis Nankaiensis), 2006, 39(3): 39.
[21] Tang R L, Li Y, Tao Q, Li N N, Li H, Han D D, Zhu P W, Wang X. Chin. Phys. B, 2013, 22(6): 066202-1-3
[22] 袁华堂(Yuan H T), 焦丽芳(Jiao L F), 曹建胜(Cao J S), 刘秀生(Liu X S), 赵明(Zhao M), 王永梅(Wang Y M). 电化学(Journal of Electrochemistry), 2004, 10(4): 460.
[23] Sanchez L, Pereira-Ramos J P. J. Mater. Chem., 1997, 7(3): 471.
[24] 袁华堂(Yuan H T), 曹建胜(Cao J S), 王一菁(Wang Y J), 周勇(Zhou Y), 武绪丽(Wu X L), 刘景旺(Liu J W). 高等学校化学学报(Chemical Journal of Chinese Universities), 2001, 22(10): 16.
[25] 高秀玲(Gao X L). 南开大学硕士论文(Master Dissertation of Nankai University), 2005.
[26] 高秀玲(Gao X L), 焦丽芳(Jiao L F), 袁华堂(Yuan H T), 曹建胜(Cao J S), 赵明(Zhao M), 李海霞(Li H X), 王永梅(Wang Y M). 电化学(Journal of Electrochemistry), 2005, 11(3): 337.
[27] 杨雷雷(Yang L L), 李法强(Li F Q), 向容(Xiang R), 朱朝梁(Zhu C L), 贾国凤(Jia G F), 彭正军(Peng Z J). 盐湖研究(Journal of Salt Lake Research), 2012, 20(2): 31.
[28] Ichikawa Y, Yagi S, Ichitsubo T, Matsubara E. Synthesis and Electrochemical Characteriazation of Spinel-type Mg Complex Oxides as Positive Electrode Active Materials for Mg Batteries. California: ECS, 2013, 500.
[29] 刘秀生(Liu X S). 南开大学硕士论文(Master Dissertation of Naikai University), 2004.
[30] Ling C, Fuminori M. Chemistry of Materials, 2013, 25: 3062.
[31] Makino K, Katayama Y, Miura T, Kishi T. Journal of Power Sources, 2001, 99: 66.
[32] Sun J Z. Asian Journal of Chemistry, 2011, 22: 260.
[33] Makino K, Katayama Y, Miura T, Kishi T. Journal of Power Sources, 2001, 97/98: 512.
[34] Huang Z D, Orikasa Y, Masese T, Yamamoto K, Mori T, Minato T, Uchimoto Y. Electrochemical Performance of MgxV2(PO4 ) 3 as Cathode Material for Mg Rechargeable Batteries. Shanghai: ECS, 2014.318.
[35] Ling C, Banerjee D, Song W, Zhang M J, Matsui M. J. Mater. Chem., 2012, 22: 13517.
[36] Feng Z Z, Yang J, NuLi Y N, Wang J L. J. Power Sources, 2008, 184: 604.
[37] 冯真真(Feng Z Z). 上海交通大学博士论文(Doctoral Dissertation of Shanghai Jiao Tong University), 2008.
[38] Feng Z Z, Yang J, NuLi Y N, Wang J L, Wang X J, Wang Z X. Electrochemistry Communications, 2008, 10: 1291.
[39] 陈强(Chen Q). 上海交通大学硕士论文(Master Dissertation of Shanghai Jiao Tong University), 2013.
[40] NuLi Y N, Yang J, Wang J L, Li Y. J. Phys. Chem. C, 2009, 113: 12594.
[41] Nuli Y N, Zheng Y P, Wang F, Yang J, Minett A I,Wang J L, Chen J. Electrochem. Commun., 2011, 13: 1143.
[42] 李云(Li Y). 上海交通大学硕士论文(Master Dissertation of Shanghai Jiao Tong University), 2009.
[43] Yun L, NuLi Y N, Yang J,Yilinuer T, Wang J L. Chinese Science Bulletin, 2011, 56: 386.
[44] Orikasa Y, Masese T, Koyama Y, Hattori M, Yamamoto K, Okado T, Huang Z D, Minato T, Tassel C, Kim J, Kobayashi Y, Abe T, Kageyama H, Uchimoto Y. Scientific Reports, 2014, 4: 5622.
[45] 李云(Li Y), 努丽燕娜(NuLi Y N), 杨军(Yang J), 伊丽奴尔 ·吐胡达洪(YiLi N E T H D H), 王久林(Wang J L). 电源技术(Chinese Journal of Power Sources), 2010, 34(10): 1031.
[46] Zheng Y P, NuLi Y N, Chen Q, Wang Y, Yang J, Wang J L. Electrochimica Acta, 2012, 66: 75.
[47] Yanna N L, Zheng Y P, Wang Y, Yang J, Wang J L. J. Mater. Chem., 2011, 21: 12437.
[48] Ranjan R, Burrty D. Olivine-Structured MgxFePO4: Cathode Material for Mg Ion Batteries. California: ECS, 2013.480.
[49] Wu J D, Gao G H, Wu G M, Liu B, Yang H Y, Zhou X W, Wang J C. RSC Adv., 2014, 4: 15014.
[50] Sun J Z. Monatsh Chem., 2013, 145: 103.

[1] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[2] 冯小琼, 马云龙, 宁红, 张世英, 安长胜, 李劲风. 铝离子电池中过渡金属硫族化合物正极材料[J]. 化学进展, 2022, 34(2): 319-327.
[3] 蔡克迪, 严爽, 徐天野, 郎笑石, 王振华. 锂离子电容电池关键电极材料[J]. 化学进展, 2021, 33(8): 1404-1413.
[4] 周世昊, 吴贤文, 向延鸿, 朱岭, 刘志雄, 赵才贤. 水系锌离子电池锰基正极材料[J]. 化学进展, 2021, 33(4): 649-669.
[5] 丁宇森, 张璞, 黎洪, 朱文欢, 魏浩. 锂硒电池的研究现状与展望[J]. 化学进展, 2021, 33(4): 610-632.
[6] 刘建文, 姜贺阳, 孙驰航, 骆文彬, 毛景, 代克化. P2结构层状复合金属氧化物钠离子电池正极材料[J]. 化学进展, 2020, 32(6): 803-816.
[7] 王官格, 张华宁, 吴彤, 刘博睿, 黄擎, 苏岳锋. 废旧锂离子电池正极材料资源化回收与再生[J]. 化学进展, 2020, 32(12): 2064-2074.
[8] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[9] 刘燕晨, 黄斌, 邵奕嘉, 沈牧原, 杜丽, 廖世军. 钾离子电池及其最新研究进展[J]. 化学进展, 2019, 31(9): 1329-1340.
[10] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[11] 杨蓉, 李兰, 任冰, 陈丹, 陈利萍, 燕映霖. 锂硫电池中的石墨烯掺杂[J]. 化学进展, 2018, 30(11): 1681-1691.
[12] 张松涛, 郑明波, 曹洁明, 庞欢. 锂硫电池用多孔碳/硫复合正极材料的研究[J]. 化学进展, 2016, 28(8): 1148-1155.
[13] 易罗财, 次素琴, 孙成丽, 温珍海. 非水系锂氧气电池正极材料研究现状[J]. 化学进展, 2016, 28(8): 1251-1264.
[14] 陈军, 丁能文, 李之峰, 张骞, 钟盛文. 锂离子电池有机正极材料[J]. 化学进展, 2015, 27(9): 1291-1301.
[15] 蔡克迪, 赵雪, 仝钰进, 肖尧, 高勇, 王诚. 锂氧电池关键技术研究[J]. 化学进展, 2015, 27(12): 1722-1731.
阅读次数
全文


摘要

镁-过渡金属复合物正极材料