English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1445-1459 DOI: 10.7536/PC140503 前一篇   后一篇

• 综述与评论 •

苯丙氨酸二肽类分子自组装:分子设计、结构调控与材料应用

赵君1, 黄仁亮*2, 齐崴*1,3, 王跃飞1, 苏荣欣1,3, 何志敏1   

  1. 1. 化学工程联合国家重点实验室 天津大学化工学院 天津 300072;
    2. 天津大学环境科学与工程学院 天津 300072;
    3. 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2014-05-01 修回日期:2014-05-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 黄仁亮, 齐崴 E-mail:tjuhrl@tju.edu.cn;qiwei@tju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 51173128,21306134)、国家高技术研究发展计划(863)项目(No. 2013AA102204)、国家重大科学仪器设备开发专项(No. 2012YQ09019405)和北洋青年学者计划项目(2012)资助

Self-Assembly of Diphenylalanine Based Peptides:Molecular Design, Structural Control and Applications

Zhao Jun1, Huang Renliang*2, Qi Wei*1,3, Wang Yuefei1, Su Rongxin1,3, He Zhimin1   

  1. 1. State Key Laboratory of Chemical Engineering, School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072;
    2. School of Environmental Science and Engineering, Tianjin University, Tianjin 300072, China;
    3. The Co-Innovation Center of Chemistry and Chemical Engineering of Tianjin, Tianjin 300072, China
  • Received:2014-05-01 Revised:2014-05-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51173128, 21306134), the National High Technology Research and Development Program of China (No. 2013AA102204), the National Key Scientific Instrument and Equipment Development Project of China (No. 2012YQ09019405) and the Beiyang Young Scholar of Tianjin University (2012)

近年来,苯丙氨酸二肽类分子的自组装研究受到了广泛关注,已成为超分子化学、生物材料科学研究的前沿领域之一。苯丙氨酸二肽类纳米组装体因具有结构多样、易功能化以及良好的生物相容性等优点,在纳米制造、组织修复等方面展示出巨大的应用潜力。本文从分子设计、组装结构调控与材料应用三个层次系统综述了苯丙氨酸二肽类分子自组装的研究进展。首先总结了苯丙氨酸二肽类分子的修饰改性,包括乙酰基、芳香环、氨基酸、短肽等基团。然后,重点介绍了苯丙氨酸二肽类分子自组装的调控策略和方法,如溶剂、界面、气相、多组分共组装和酶催化组装。最后,介绍了苯丙氨酸二肽类自组装材料在纳米材料合成、传感检测、药物传递及组织修复等方面的应用现状,并分析了该领域今后的发展方向。

The supramolecular self-assembly of diphenylalanine(FF)-based peptides have been the focus of considerable research in the field of supramolecular chemistry and biomaterials over the past few years. Due to the structural diversity, facile functionalization and excellent biocompatibility, the diphenylalanine-based assemblies are extremely attractive as building blocks for various applications such as nanofabrication and tissue engineering. This review aims to introduce the recent advances in the self-assembly of diphenylalanine-based peptides, from the molecular design, structural control and applications. Specifically, we summarize the diphenylalanine-based peptides with different chemical groups, such as acetyl, aromatic ring, amino acid, and short peptides. Meanwhile, we highlight the various strategies and methods for controlling the self-assembly behavior and structure of assemblies, including solvent, interface, vapor, co-assembly and enzymatic assembly. Moreover, we introduce the applications of the diphenylalanine-based nanomaterials, such as the templates for nanomaterials fabrication, elements in sensors, carriers for drug delivery and scaffolds for tissue engineering & regeneration. In addition, the problems existed in this field and the key issues for further research were also discussed in this review.

Contents
1 Introduction
2 Molecular design of FF-based peptides
3 Structural control of FF-based assemblies
3.1 pH and temperature
3.2 Solvents
3.3 Interfaces
3.4 Vapors
3.5 Co-assembly
3.6 Enzymatic self-assembly
4 Applications of FF-based nanomaterials
4.1 Nanofabrication
4.2 Sensors
4.3 Drug delivery
4.4 Tissue engineering and regeneration
4.5 Other applications
5 Conclusion and outlook

中图分类号: 

()

[1] Yan X, Zhu P, Li J. Chem. Soc. Rev., 2010, 39: 1877.
[2] Gao X Y, Matsui H. Adv. Mater., 2005, 17: 2037.
[3] Scanlon S, Aggeli A. Nano Today, 2008, 3: 22.
[4] Yang Y, Khoe U, Wang X, Akihiro H, Hidenori Y, Zhang S. Nano Today, 2009, 4: 193.
[5] 黄仁亮(Huang R L), 齐崴(Qi W), 姜楠(Jiang N), 苏荣欣(Su R X), 何志敏(He Z M). 化学进展(Progress in Chemistry), 2010, 22: 2328.
[6] 孟庆斌(Meng Q B), 刘克良(Liu K L). 化学进展(Progress in Chemistry), 2009, 21: 2411.
[7] Gazit E. Chem. Soc. Rev., 2007, 36: 1263.
[8] Luo Z, Zhang S. Chem. Soc. Rev., 2012, 41: 4736.
[9] Raeburn J, Cardoso A Z, Adams D J. Chem. Soc. Rev., 2013, 42: 5143.
[10] Reches M, Gazit E. Science, 2003, 300: 625.
[11] Yang Z, Liang G, Xu B. Acc. Chem. Res., 2008, 41: 315.
[12] Wang Y F, Huang R L, Qi W, Wu Z J, Su R X, He Z M. Nanotechnology, 2013, 24.
[13] Huang R L, Qi W, Su R X, Zhao J, He Z M. Soft Matter, 2011, 7: 6418.
[14] Huang R, Wu S, Li A, Li Z. J. Mater. Chem. A, 2014, 2: 1672.
[15] Wang Y, Qi W, Huang R, Su R, He Z. RSC Adv., 2014, 4: 15340.
[16] Huang R L, Su R X, Qi W, Zhao J, He Z M. Nanotechnology, 2011, 22: 7.
[17] Huang R, Qi W, Feng L, Su R, He Z. Soft Matter, 2011, 7: 6222.
[18] Yan X, He Q, Wang K, Duan L, Cui Y, Li J. Angew. Chem.-Int. Edit., 2007, 46: 2431.
[19] Song Y, Challa S R, Medforth C J, Qiu Y, Watt R K, Pena D, Miller J E, van Swol F, Shelnutt J A. Chem. Commun., 2004, 1044.
[20] Gupta M, Bagaria A, Mishra A, Mathur P, Basu A, Ramakumar S, Chauhan V S. Adv. Mater., 2007, 19: 858.
[21] Vegners R, Shestakova I, Kalvinsh I, Ezzell R M, Janmey P A. J. Pept. Sci., 1995, 1: 371.
[22] Ryu J, Park C B. Adv. Mater., 2008, 20: 3754.
[23] Yan X H, Cui Y, He Q, Wang K W, Li J B. Chem. Mater., 2008, 20: 1522.
[24] Su Y, Yan X H, Wang A H, Fei J B, Cui Y, He Q, Li J B. J. Mater. Chem., 2010, 20: 6734.
[25] Reches M, Gazit E. Phys. Biol., 2006, 3: S10.
[26] Adler-Abramovich L, Kol N, Yanai I, Barlam D, Shneck R Z, Gazit E, Rousso I. Angew. Chem.-Int. Edit., 2010, 49: 9939.
[27] Amdursky N, Molotskii M, Gazit E, Rosenman G. Appl. Phys. Lett., 2009, 94: 261907.
[28] Reches M, Gazit E. Nano Lett., 2004, 4: 581.
[29] Reches M, Gazit E. Isr. J. Chem., 2005, 45: 363.
[30] Jayawarna V, Smith A, Gough J E, Ulijn R V. Biochem. Soc. Trans., 2007, 35: 535.
[31] Kuang Y, Du X, Zhou J, Xu B. Adv. Healthcare Mater., 2014: doi: 10.1002/adhm.201300645.
[32] Smith A M, Williams R J, Tang C, Coppo P, Collins R F, Turner M L, Saiani A, Ulijn R V. Adv. Mater., 2008, 20: 37.
[33] Mahler A, Reches M, Rechter M, Cohen S, Gazit E. Adv. Mater., 2006, 18: 1365.
[34] Orbach R, Adler-Abramovich L, Zigerson S, Mironi-Harpaz I, Seliktar D, Gazit E. Biomacromolecules, 2009, 10: 2646.
[35] Yang Z M, Xu K M, Guo Z F, Guo Z H, Xu B. Adv. Mater., 2007, 19: 3152.
[36] Williams R J, Smith A M, Collins R, Hodson N, Das A K, Ulijn R V. Nat. Nanotechnol., 2009, 4: 19.
[37] Chronopoulou L, Lorenzoni S, Masci G, Dentini M, Togna A R, Togna G, Bordi F, Palocci C. Soft Matter, 2010, 6: 2525.
[38] Yang Z, Liang G, Guo Z, Guo Z, Xu B. Angew. Chem.-Int. Edit., 2007, 46: 8216.
[39] Li J, Gao Y, Kuang Y, Shi J, Du X, Zhou J, Wang H, Yang Z, Xu B. J. Am. Chem. Soc., 2013, 135: 9907.
[40] Yang Z M, Liang G L, Wang L, Xu B. J. Am. Chem. Soc., 2006, 128: 3038.
[41] Zhou J, Du X, Gao Y, Shi J, Xu B. J. Am. Chem. Soc., 2014, 136: 2970.
[42] Roy S, Banerjee A. Soft Matter, 2011, 7: 5300.
[43] Sun Z, Li Z, He Y, Shen R, Deng L, Yang M, Liang Y, Zhang Y. J. Am. Chem. Soc., 2013, 135: 13379.
[44] Kim J, Han T H, Kim Y I, Park J S, Choi J, Churchill D G, Kim S O, Ihee H. Adv. Mater., 2010, 22: 583.
[45] Kumaraswamy P, Lakshmanan R, Sethuraman S, Krishnan U M. Soft Matter, 2011, 7: 2744.
[46] Tang C, Smith A M, Collins R F, Ulijn R V, Saiani A. Langmuir, 2009, 25: 9447.
[47] Jayawarna V, Ali M, Jowitt T A, Miller A F, Saiani A, Gough J E, Ulijn R V. Adv. Mater., 2006, 18: 611.
[48] Na N, Mu X Y, Liu Q L, Wen J Y, Wang F F, Ouyang J. Chem. Commun., 2013, 49: 10076.
[49] Gorbitz C H. Chem. Commun., 2006, 2332.
[50] Yan X, Li J, Möhwald H. Adv. Mater., 2011, 23: 2796.
[51] Park J S, Han T H, Oh J K, Kim S O. Macromolecular Chemistry and Physics, 2009, 210: 1283.
[52] Ryu J, Lim S Y, Park C B. Adv. Mater., 2009, 21: 1577.
[53] Amdursky N, Molotskii M, Gazit E, Rosenman G. J. Am. Chem. Soc., 2010, 132: 15632.
[54] Han T H, Kim J, Park J S, Park C B, Ihee H, Kim S O. Adv. Mater., 2007, 19: 3924.
[55] Zhu P, Yan X, Su Y, Yang Y, Li J. Chemistry, 2010, 16: 3176.
[56] Reches M, Gazit E. Nat. Nanotechnol., 2006, 1: 195.
[57] Du M, Zhu P, Yan X, Su Y, Song W, Li J. Chemistry, 2011, 17: 4238.
[58] Ryu J, Park C B. Angew. Chem.-Int. Edit., 2009, 48: 4820.
[59] Ryu J, Kim S W, Kang K, Park C B. ACS Nano, 2010, 4: 159.
[60] Ryu J, Park C B. Biotechnol. Bioeng., 2010, 105: 221.
[61] Ryu J, Park C B. Chem. Mater., 2008, 20: 4284.
[62] Adler-Abramovich L, Aronov D, Beker P, Yevnin M, Stempler S, Buzhansky L, Rosenman G, Gazit E. Nat. Nanotechnol., 2009, 4: 849.
[63] Lee J S, Yoon I, Kim J, Ihee H, Kim B, Park C B. Angew. Chem.-Int. Edit., 2011, 50: 1164.
[64] Rissanou A N, Georgilis E, Kasotakis E, Mitraki A, Harmandaris V. J. Phys. Chem. B, 2013, 117: 3962.
[65] Yan X, Su Y, Li J, Früh J, Möhwald H. Angew. Chem.-Int. Edit., 2011, 50: 11186.
[66] Hendler N, Sidelman N, Reches M, Gazit E, Rosenberg Y, Richter S. Adv. Mater., 2007, 19: 1485.
[67] Capito R M, Azevedo H S, Velichko Y S, Mata A, Stupp S I. Science, 2008, 319: 1812.
[68] Rozkiewicz D I, Myers B D, Stupp S I. Angew. Chem.-Int. Edit., 2011, 50: 6324.
[69] Yuran S, Razvag Y, Reches M. ACS Nano, 2012, 6: 9559.
[70] Maity S, Nir S, Reches M. J. Mater. Chem. B, 2014, 2: 2583.
[71] Zou Q, Zhang L, Yan X, Wang A, Ma G, Li J, Möhwald H, Mann S. Angew. Chem.-Int. Edit., 2014, 53: 2366.
[72] Kim J H, Ryu J, Park C B. Small, 2011, 7: 718.
[73] Kozhevnikov I V. Chem. Rev., 1998, 98: 171.
[74] Rhule J T, Hill C L, Judd D A, Schinazi R F. Chem. Rev., 1998, 98: 327.
[75] Sadakane M, Steckhan E. Chem. Rev., 1998, 98: 219.
[76] Yan X, Zhu P, Fei J, Li J. Adv. Mater., 2010, 22: 1283.
[77] Ma H, Fei J, Cui Y, Zhao J, Wang A, Li J. Chem. Commun., 2013, 49: 9956.
[78] Zhou M, Smith A M, Das A K, Hodson N W, Collins R F, Ulijn R V, Gough J E. Biomaterials, 2009, 30: 2523.
[79] Berillo D, Mattiasson B, Galaev I Y, Kirsebom H. J. Colloid Interface Sci., 2012, 368: 226.
[80] Pont G, Chen L, Spiller D G, Adams D J. Soft Matter, 2012, 8: 7797.
[81] Liu Y, Cheng Y, Wu H C, Kim E, Ulijn R V, Rubloff G W, Bentley W E, Payne G F. Langmuir, 2011, 27: 7380.
[82] Fleming S, Debnath S, Frederix P W J M, Hunt N T, Ulijn R V. Biomacromolecules, 2014, 15: 1171.
[83] Abul-Haija Y M, Roy S, Frederix P W J M, Javid N, Jayawarna V, Ulijn R V. Small, 2014, 10: 973.
[84] Yang Z, Gu H, Fu D, Gao P, Lam J K, Xu B. Adv. Mater., 2004, 16: 1440.
[85] Yang Z, Xu B. Chem. Commun., 2004, 2424.
[86] Toledano S, Williams R J, Jayawarna V, Ulijn R V. J. Am. Chem. Soc., 2006, 128: 1070.
[87] Hughes M, Xu H, Frederix P W J M, Smith A M, Hunt N T, Tuttle T, Kinloch I A, Ulijn R V. Soft Matter, 2011, 7: 10032.
[88] Qin X, Xie W, Tian S, Cai J, Yuan H, Yu Z, Butterfoss G L, Khuong A C, Gross R A. Chem. Commun., 2013, 49: 4839.
[89] Das A K, Collins R, Ulijn R V. Small, 2008, 4: 279.
[90] Yang Z, Ho P L, Liang G, Chow K H, Wang Q, Cao Y, Guo Z, Xu B. J. Am. Chem. Soc., 2006, 129: 266.
[91] Gao Y, Shi J, Yuan D, Xu B. Nat. Commun., 2012, 3: 1033.
[92] Gao J, Wang H, Wang L, Wang J, Kong D, Yang Z. J. Am. Chem. Soc., 2009, 131: 11286.
[93] Huaimin W, Chunhua R, Zhijian S, Ling W, Xuemei C, Zhimou Y. Nanotechnology, 2010, 21: 225606.
[94] Huaimin W, Zhihong W, Donghui S, Jingyu W, Jie G, Ling W, Deling K, Zhimou Y. Nanotechnology, 2010, 21: 155602.
[95] Wang H, Shi Y, Wang L, Yang Z. Chem. Soc. Rev., 2013, 42: 891.
[96] Zhang X, Chu X, Wang L, Wang H, Liang G, Zhang J, Long J, Yang Z. Angew. Chem.-Int. Edit., 2012, 51: 4388.
[97] Wang H, Wang Z, Yi X, Long J, Liu J, Yang Z. Chem. Commun., 2011, 47: 955.
[98] Ulijn R V. J. Mater. Chem., 2006, 16: 2217.
[99] Gao Y, Yang Z, Kuang Y, Ma M L, Li J, Zhao F, Xu B. Biopolymers, 2010, 94: 19.
[100] Lakshmanan A, Zhang S, Hauser C A. Trends Biotechnol., 2012, 30: 155.
[101] Han T H, Lee W J, Lee D H, Kim J E, Choi E Y, Kim S O. Adv. Mater., 2010, 22: 2060.
[102] Ryu J, Kim S W, Kang K, Park C B. Adv. Mater., 2010, 22: 5537.
[103] Han T H, Oh J K, Park J S, Kwon S H, Kim S W, Kim S O. J. Mater. Chem., 2009, 19: 3512.
[104] Han T H, Moon H S, Hwang J O, Seok S I, Im S H, Kim S O. Nanotechnology, 2010, 21: 185601.
[105] Andersen K B, Castillo-Leon J, Bakmand T, Svendsen W E. Jpn. J. Appl. Phys., 2012, 51.
[106] Li P, Chen X, Yang W. Langmuir, 2013, 29: 8629.
[107] McQuade D T, Pullen A E, Swager T M. Chem. Rev., 2000, 100: 2537.
[108] Gerard M, Chaubey A, Malhotra B D. Biosens. Bioelectron., 2002, 17: 345.
[109] Yemini M, Reches M, Rishpon J, Gazit E. Nano Lett., 2005, 5: 183.
[110] Yemini M, Reches M, Gazit E, Rishpon J. Anal. Chem., 2005, 77: 5155.
[111] Adler-Abramovich L, Badihi-Mossberg M, Gazit E, Rishpon J. Small, 2010, 6: 825.
[112] Sasso L, Vedarethinam I, Emneus J, Svendsen W E, Castillo-Leon J. J. Nanosci. Nanotechnol., 2012, 12: 3077.
[113] Amdursky N, Molotskii M, Aronov D, Adler-Abramovich L, Gazit E, Rosenman G. Nano Lett., 2009, 9: 3111.
[114] Amdursky N, Gazit E, Rosenman G. Adv. Mater., 2010, 22: 2311.
[115] Kim J H, Lim S Y, Nam D H, Ryu J, Ku S H, Park C B. Biosens. Bioelectron., 2011, 26: 1860.
[116] Yan X, Cui Y, Qi W, Su Y, Yang Y, He Q, Li J. Small, 2008, 4: 1687.
[117] Liang G, Yang Z, Zhang R, Li L, Fan Y, Kuang Y, Gao Y, Wang T, Lu W W, Xu B. Langmuir, 2009, 25: 8419.
[118] Silva R F, Araujo D R, Silva E R, Ando R A, Alves W A. Langmuir, 2013, 29: 10205.
[119] Wang X M, Horii A, Zhang S G. Soft Matter, 2008, 4: 2388.
[120] Palmer L C, Newcomb C J, Kaltz S R, Spoerke E D, Stupp S I. Chem. Rev., 2008, 108: 4754.
[121] Lee J S, Ryu J, Park C B. Soft Matter, 2009, 5: 2717.
[122] Handelman A, Lavrov S, Kudryavtsev A, Khatchatouriants A, Rosenberg Y, Mishina E, Rosenman G. Adv. Optical Mater., 2013, 1: 875.
[123] Kim J H, Lee M, Lee J S, Park C B. Angew. Chem. Int. Edit., 2012, 51: 517.
[124] Adler-Abramovich L, Gazit E. J. Pept. Sci., 2008, 14: 217.
[125] Kuang Y, Gao Y, Xu B. Chem. Commun., 2011, 47: 12625.

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[4] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[5] 廖子萱, 王宇辉, 郑建萍. 碳点基水相室温磷光复合材料研究进展[J]. 化学进展, 2023, 35(2): 263-373.
[6] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[7] 王克青, 薛慧敏, 秦晨晨, 崔巍. 二苯丙氨酸二肽微纳米结构的可控组装及应用[J]. 化学进展, 2022, 34(9): 1882-1895.
[8] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[9] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[10] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[11] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[12] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[13] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[14] 田浩, 李子木, 汪长征, 许萍, 徐守芳. 分子印迹荧光传感构建及应用[J]. 化学进展, 2022, 34(3): 593-608.
[15] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.