English
新闻公告
More
化学进展 2015, Vol. 27 Issue (1): 113-124 DOI: 10.7536/PC140502 前一篇   后一篇

• 综述与评论 •

颗粒物质混合行为的离散单元法研究

戚华彪1,2, 周光正*1, 于福海1,2, 葛蔚*1, 李静海1   

  1. 1. 中国科学院过程工程研究所 多相复杂系统国家重点实验室 北京 100190;
    2. 中国科学院大学 北京 100049
  • 收稿日期:2014-05-01 修回日期:2014-05-01 出版日期:2015-01-15 发布日期:2014-11-24
  • 通讯作者: 周光正, 葛蔚 E-mail:gzzhou@ipe.ac.cn;wge@ipe.ac.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2015CB251402),国家自然科学基金项目(No. 21206167, 21225628, 91334204)和中国科学院战略性先导科技专项(No. XDA07080203)资助

Researches on Mixing of Granular Materials with Discrete Element Method

Qi Huabiao1,2, Zhou Guangzheng*1, Yu Fuhai1,2, Ge Wei*1, Li Jinghai1   

  1. 1. State Key Laboratory of Multiphase Complex Systems, Institute of Process Engineering, Chinese Academy of Sciences, Beijing 100190, China;
    2. University of Chinese Academy of Sciences, Beijing 100049, China
  • Received:2014-05-01 Revised:2014-05-01 Online:2015-01-15 Published:2014-11-24
  • Supported by:

    The work was supported by the National Key Basic Research Program of China (No. 2015CB251402), the National Natural Science Foundation of China (No. 21206167, 21225628, 91334204) and the “Strategic Priority Research Program” of the Chinese Academy of Sciences (No. XDA07080203).

颗粒物质的混合是化学工业生产的重要单元操作,由于颗粒物质运动行为的复杂性,工业混合器中的颗粒运动规律及物理机制至今仍未被全面认识。作为一种精细的数值方法,离散单元法(discrete element method,DEM)在单颗粒尺度上描述颗粒物质的受力与运动行为,因此在研究混合机理方面具有独特优势。随着DEM模型与计算技术的快速发展,DEM已被广泛应用于各种混合过程的研究。通过DEM可以全面考察不同的颗粒性质、混合器类型以及操作条件等因素对混合机理的影响,从而对于指导粉体工业的生产操作及设备优化改进具有重要意义。本文重点阐述了DEM在无黏颗粒、黏结性颗粒、非球形颗粒混合过程模拟以及大规模计算等方面的最新进展,并对未来发展进行了展望。

The mixing of granular materials is an important unit operation in many industries. Due to the complex behaviors of granular flows, general laws and fundamental mechanisms of granular flows in industrial mixers are not completely understood yet. As a detailed numerical approach, the discrete element method (DEM) describes the forces and motions of granular materials at the particle scale, and thus has notable advantages over experimental approaches in the research of mixing mechanisms. With the rapid developments of its models and the computational technologies, this method becomes more and more popular in the simulations of various mixing processes. The effects of particle properties, mixer types, and operating parameters on mixing rate and mixing mechanisms could be investigated comprehensively through DEM, which would be quite valuable for the design and optimization of mixers as well as their optimal operations. Moreover, the high computational cost of industrial-scale simulations could be greatly alleviated by the fast developments of computer hardware, such as the advent of graphics processing unit (GPU). This review summarizes the recent progresses of DEM simulations on mixing, with emphasis on the treatments for non-cohesive particles in different kinds of mixers (rotary and fixed), cohesive particles (fine and wet), non-spherical particles (direct description of shape and multi-sphere method), and large-scale implementations. Finally, future development of the DEM method in mixing simulations is prospected.

Contents
1 Introduction
2 Non-cohesive particles
3 Cohesive particles
3.1 Fine particles
3.2 Wet particles
4 Non-spherical particles
4.1 Direct description of shape
4.2 Multi-sphere method
5 Large-scale implementations
6 Conclusions and outlook

中图分类号: 

()

[1] Jaeger H M, Nagel S R, Behringer R P. Rev. Mod. Phys., 1996, 68 (4): 1259.
[2] Aranson I S, Tsimring L S. Rev. Mod. Phys., 2006, 78 (2): 641.
[3] Campbell C S. Powder Technol., 2006, 162 (3): 208.
[4] Bridgwater J. Particuology, 2012, 10 (4): 397.
[5] Ottino J M, Khakhar D V. Annu. Rev. Fluid Mech., 2000, 32: 55.
[6] Zhang J, Majmudar T S, Tordesillas A, Behringer R P. Granul. Matter, 2010, 12 (2): 159.
[7] Lenoir N, Bornert M, Desrues J, Bésuelle P, Viggiani G. Strain, 2007, 43: 193.
[8] Cundall P A, Strack O D L. Géotechnique, 1979, 29 (1): 47.
[9] Zhu H P, Zhou Z Y, Yang R Y, Yu A B. Chem. Eng. Sci., 2007, 62 (13): 3378.
[10] 徐泳(Xu Y), 孙其诚(Sun Q C), 张凌(Zhang L),黄文彬(Huang W B). 力学进展(Advances in Mechanics), 2003, 33 (2): 251.
[11] 孙其诚(Sun Q C), 王光谦(Wang G Q). 力学进展(Advances in Mechanics), 2008, 38 (1): 87.
[12] 孙其诚(Sun Q C), 王光谦(Wang G Q). 颗粒物质力学导论(An Introduction to the Mechanics of Granular Materials). 北京: 科学出版社(Beijing: Science Press), 2009.
[13] Kruggel-Emden H, Simsek E, Rickelt S, Wirtz S, Scherer V. Powder Technol., 2007, 171: 157.
[14] Johnson K L. Contact Mechanics. Cambridge: Cambridge University Press, 1985.
[15] Mindlin R D, Deresiewicz H. J. Appl. Mech., 1953, 20: 327.
[16] Thornton C, Yin K K. Powder Technol., 1991, 65 (1): 153.
[17] Thornton C. Journal of Applied Mechanics, 1997, 64 (2): 383.
[18] Bertrand F, Leclaire L A, Levecque G. Chem. Eng. Sci., 2005: 60 (8): 2517.
[19] Walton O R, Braun R L. J. Rheol., 1986, 30 (5): 949.
[20] Tsuji Y, Tanaka T, Ishida T. Powder Technol., 1992, 71 (3): 239.
[21] Zhou Y C, Wright B D, Yang R Y, Xu B H, Yu A B. Physica A, 1999, 269: 536.
[22] Yang R Y, Zou R P, Yu A B. Phys. Rev. E, 2000, 62: 3900.
[23] Iwashita K, Oda M. J. Eng. Mech., 1998, 124: 285.
[24] Ai J, Chen J F, Rotter J M, Ooi J Y. Powder Technol., 2011, 206 (3): 269.
[25] Jiang M J, Yu H S, Harris D. Comput. Geotech., 2005, 32(5): 340.
[26] Li X, Chu X, Feng Y T. Eng. Comput., 2005, 22(8): 894.
[27] Tordesillas A, Walsh D C. Powder Technol., 2002, 124 (1): 106.
[28] Di Renzo A, Di Maio F P. Chem. Eng. Sci., 2004, 59: 525.
[29] Ji S, Shen H H. J. Eng. Mech., 2006, 132 (11): 1252.
[30] Yang R Y, Zou R P, Yu A B. Powder Technol., 2003, 130 (1): 138.
[31] Xu Y, Xu C, Zhou Z, Du J, Hu D. Particuology, 2010, 8 (2): 141.
[32] Jiang M, Zhao Y, Liu G, Zheng J. Particuology, 2011, 9 (3): 270.
[33] Moakher M, Shinbrot T, Muzzio F J. Powder Technol., 2000, 109 (1/3): 58.
[34] Manickam S S, Shah R, Tomei J, Bergman T L, Chaudhuri B. Powder Technol., 2010, 201 (1): 83.
[35] Romanski F S, Dubey A, Chester A W, Tomassone M S. Powder Technol., 2012, 221: 57.
[36] Seville J P K, Kuo H P, Knight P C, Parker D J, Tsuji Y, Adams M J. Chem. Eng. Sci., 2002, 57 (17): 3621.
[37] Lemieux M, Léonard G, Doucet J, Leclaire L A, Viens F, Chaouki J, Bertrand F. Powder Technol., 2008, 181 (2): 205.
[38] Sudah O S, Arratia P E, Alexander A, Muzzio F J. AICHE J., 2005, 51 (3): 836.
[39] Lemieux M, Bertrand F, Chaouki J, Gosselin P. Chem. Eng. Sci., 2007, 62 (6): 1783.
[40] Zhou Y C, Yu A B, Stewart R L, Bridgwater J. Chem. Eng. Sci., 2004, 59 (6): 1343.
[41] Chandratilleke G R, Zhou Y C, Yu A B, Bridgwater J. Ind. Eng. Chem. Res., 2010, 49 (11): 5467.
[42] Remy B, Glasser B J, Khinast J G. AICHE J., 2010, 56 (2): 336.
[43] Kaneko Y, Shiojima T, Horio M. Powder Technol., 2000, 108 (1): 55.
[44] Schutyser M A I, Briels W J, Rinzema A, Boom R M. Biotechnol. Bioeng., 2003, 84 (1): 29.
[45] Feng Y Q, Yu A B. Chem. Eng. Sci., 2007, 62 (1): 256.
[46] Ren B, Shao Y, Zhong W, Jin B, Yuan Z, Lu Y. Powder Technol., 2012, 222: 85.
[47] Cheng Y, Zhang W, Guan G, Fushimi C, Tsutsumi A, Wang C H. Powder Technol., 2014, 253: 722.
[48] Seiden G, Thomas P J. Adv. Phys., 2011, 83 (4): 1323.
[49] Arntz M M H D, den Otter W K, Briels W J, Bussmann P J T, Beeftink H H, Boom R M. AICHE J., 2008, 54 (12): 3133.
[50] Arratia P E, Duong N, Muzzio F J, Godbole P, Reynolds S. Powder Technol., 2006, 164 (1): 50.
[51] Ren X, Xu J, Qi H, Cui L, Ge W, Li J. Powder Technol., 2013, 239: 348.
[52] Dubey A, Vanarase A U, Muzzio F J. AICHE J., 2012, 58 (12): 3676.
[53] Marigo M, Cairns D L, Davies M, Ingram A, Stitt E H. Powder Technol., 2011, 212 (1): 17.
[54] Marigo M, Cairns D L, Davies M, Ingram A, Stitt E H. Powder Technol., 2012, 217: 540.
[55] Sinnott M, Cleary P W, Morrison R. Miner. Eng., 2006, 19 (15): 1537.
[56] Jayasundara C T, Yang R Y, Yu A B, Rubenstein J. Int. J. Miner. Process., 2010, 96 (1/4): 27.
[57] Yu A B, Bridgwater J, Burbidge A. Powder Technol., 1997, 92 (3): 185.
[58] Li S, Marshall J S, Liu G, Yao Q. Prog. Energy Combust. Sci., 2011, 37 (6): 633.
[59] Visser J. Powder Technol., 1989, 58 (1): 1.
[60] Johnson K L, Kendall K, Roberts A D. Proceedings of the Royal Society of London Series A—Mathematical, Physical and Engineering Sciences, 1971, 324: 301.
[61] Derjaguin B V, Muller V M, Toporov Y P. J. Colloid Interface Sci., 1975, 53: 314.
[62] Liu G, Li S, Yao Q. Powder Technol., 2011, 207 (1): 215.
[63] Pasha M, Hare C, Hassanpour A, Ghadiri M. Powder Technol., 2013, 233: 80.
[64] Iordanoff I, Fillot N, Berthier Y. Powder Technol., 2005, 159: 46.
[65] Chaudhuri B, Mehrotra A, Muzzio F J, Tomassone M S. Powder Technol., 2006, 165: 105.
[66] Gilabert F A, Roux J N, Castellanos A. Phys. Rev. E, 2007, 75 (1): 011303.
[67] Chandratilleke R, Yu A, Bridgwater J, Shinohara K. Ind. Eng. Chem. Res., 2014, 53: 4119.
[68] Sarkar A, Wassgren C. Chem. Eng. Sci., 2010, 65 (21): 5687.
[69] Luding S. Powder Technol., 2005, 158 (1): 45.
[70] Deng X, Scicolone J V, Davé R N. Powder Technol., 2013, 243: 96.
[71] Limtrakul S, Rotjanavijit W, Vatanatham T. Chem. Eng. Sci., 2007, 62: 232.
[72] Wang S, Li X, Lu H, Liu G, Wang J, Xu P. Powder Technol., 2011, 207: 65.
[73] Aarons L R, Balachandar S, Horie Y. Powder Technol., 2013, 235: 18.
[74] Li H M, McCarthy J J. Phys. Rev. Lett., 2003, 90 (18): 184301.
[75] Mitarai N, Nori F. Adv. Phys., 2006, 55 (1/2): 1.
[76] Fisher R A. J. Agric. Sci., 1926, 16: 492.
[77] Lian G, Thornton C, Adams M J. J. Colloid Interface Sci., 1993, 161 (1): 138.
[78] Willett C D, Adams M J, Johnson S A, Seville J P K. Langmuir, 2000, 16 (24): 9396.
[79] Mikami T, Kamiya H, Horio M. Chem. Eng. Sci., 1998, 53: 1927.
[80] McCarthy J J. Powder Technol., 2003, 138 (1): 63.
[81] Liu P Y, Yang R Y, Yu A B. Phys. Fluids, 2013, 25 (6): 063301.
[82] Liu P Y, Yang R Y, Yu A B. Granul. Matter, 2013, 15 (4): 427.
[83] 高红利(Gao H L), 陈友川(Chen Y C), 赵永志(Zhao Y Z), 郑津洋(Zheng J Y). 物理学报(Acta Physica Sinica), 2012, 60 (12): 325.
[84] Radl S, Kalvoda E, Glasser B J, Khinast J G. Powder Technol., 2010, 200 (3): 171.
[85] Remy B, Khinast J G, Glasser B J. AICHE J., 2012, 58 (11): 3354.
[86] Hsiau S, Yang S. Chem. Eng. Sci., 2003, 58 (2): 339.
[87] Lian G, Thornton C, Adams M J. Chem. Eng. Sci., 1998, 53: 3381.
[88] Jain K, Shi D, McCarthy J J. Powder Technol., 2004, 146: 160.
[89] Zhu R R, Zhu W B, Xing L C, Sun Q Q. Powder Technol., 2011, 210 (1): 73.
[90] He Y, Peng W, Wang T, Yan S. Math. Probl. Eng., 2014: 316568.
[91] Di Renzo A, Cello F, Di Maio F P. Chem. Eng. Sci., 2011, 66: 2945.
[92] Wang S, Sun Z, Li X, Gao J, Lan X, Dong Q. Powder Technol., 2013, 237: 314.
[93] Viduka S M, Feng Y Q, Hapgood K, Schwarz M P. Int. J. Miner. Process., 2013, 123: 108.
[94] Mukherjee A K, Mishra B K. Int. J. Miner. Process., 2007, 82: 211.
[95] Xia Y K, Peng F F. Miner. Eng., 2007, 20: 113.
[96] Gladkyy A, Schwarze R. Granul. Matter, 2014, 16(6): 911.
[97] 周光正(Zhou G Z), 葛蔚(Ge W).化工学报(CIESC Journal), 2014, 65 (4): 1145.
[98] Zhou G, Ge W, Li B, Li X, Wang P, Wang J, Li J. Microfluid. Nanofluid., 2013, 15 (4): 481.
[99] D?iugys A, Peters B. Granul. Matter, 2001, 3 (4): 231.
[100] Ketterhagen W R, Ende M T A, Hancock B C. J. Pharm. Sci., 2009, 98 (2): 442.
[101] Pena A A, Garcia-Rojo R, Herrmann H J. Granul. Matter, 2007, 9 (3/4): 279.
[102] Höhner D, Wirtz S, Scherer V. Powder Technol., 2013, 235: 614.
[103] Höhner D, Wirtz S, Scherer V. Powder Technol., 2014, 253: 256.
[104] Favier J F, Abbaspour-Fard M H, Kremmer M, Raji A O. Eng. Comput., 1999, 16 (4): 467.
[105] Lin X, Ng T T. Int. J. Numer. Anal. Methods Geomech., 1995, 19 (9): 653.
[106] Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. Chem. Eng. Sci., 2010, 65 (22): 5852.
[107] Nezami E G, Hashash U M A, Zhao D, Ghaboussi J. Comput. Geotech., 2004, 31 (7): 575.
[108] Kodam M, Curtis J, Hancock B, Wassgren C. Chem. Eng. Sci., 2012, 69 (1): 587.
[109] Cleary P W. Eng. Comput., 2004, 21 (2/3/4): 169.
[110] Cleary P W. Powder Technol., 2000, 109 (1/3): 83.
[111] Cleary P W. Powder Technol., 2013, 248: 103.
[112] Geng F, Yuan Z, Yan Y, Luo D, Wang H, Li B, Xu D. Powder Technol., 2009, 193 (1): 50.
[113] Geng F, Wang Y, Li Y, Yuan L, Wang X, Liu M, Yuan Z. Particuology, 2013, 11 (5): 594.
[114] Hua X, Curtis J, Hancock B, Ketterhagen W, Wassgren C. Chem. Eng. Sci., 2013, 101: 144.
[115] 赵啦啦(Zhao L L), 刘初升(Liu C S), 闫俊霞(Yan J X), 徐志鹏(Xu Z P). 物理学报(Acta Physica Sinica), 2010, 59 (3): 1870.
[116] Markauskas D, Ka D?ianauskas R, Diugys A, Navakas R. Granul. Matter, 2010, 12 (1): 107.
[117] Yu Y, Saxén H. Powder Technol., 2014, 262: 233.
[118] Ketterhagen W R. Int. J. Pharm., 2011, 409: 137.
[119] Kruggel-Emden H, Ka D?ianauskas R. Chem. Eng. Sci., 2013, 92: 105.
[120] Ren B, Zhong W, Jin B, Shao Y, Yuan Z. Powder Technol., 2013, 234: 58.
[121] Oschmann T, Hold J, Kruggel-Emden H. Powder Technol., 2014, 258: 304.
[122] Chung Y C, Liao H H, Hsiau S S. Powder Technol., 2013, 237: 53.
[123] Kruggel-Emden H, Rickelt S, Wirtz S, Scherer V. Powder Technol., 2008, 188 (2): 153.
[124] Höhner D, Wirtz S, Kruggel-Emden H, Scherer V. Powder Technol., 2011, 208 (3): 643.
[125] Kodam M, Bharadwaj R, Curtis J, Hancock B, Wassgren C. Chem. Eng. Sci., 2009, 64 (15): 3466.
[126] Latham J P, Munjiza A, Garcia X, Xiang J, Guises R. Miner. Eng., 2008, 21 (11): 797.
[127] Williams K C, Chen W, Weeger S, Donohue T J. Particuology, 2014, 12: 80.
[128] Mio H, Higuchi R, Ishimaru W, Shimosaka A, Shirakawa Y, Hidaka J. Adv. Powder Technol., 2009, 20: 406.
[129] Alizadeh E, Bertrand F, Chaouki J. Comput. Chem. Eng., 2014, 64: 1.
[130] Cleary P W. Eng. Comput., 2009, 26 (6): 698.
[131] Cleary P W. Particuology, 2010, 8 (2): 106.
[132] 多相复杂系统国家重点实验室(State Key Laboratory of Multiphase Complex Systems). 基于GPU的多尺度离散模拟并行计算(GPU-based Parallel Computations of Multiscale Discrete Systems). 北京: 科学出版社(Beijing: Science Press), 2009.
[133] 狄少丞(Di S C), 季顺迎(Ji S Y). 力学学报(Chinese Journal of Theoretical and Applied Mechanics), 2014, 46 (4): 561.
[134] NVIDIA. NVIDIA CUDA C Programming Guide Version 3.1. Santa Clara, CA, 2010.
[135] Radeke C A, Glasser B J, Khinast J G. Chem. Eng. Sci., 2010, 65 (24): 6435.
[136] Wang X, Ge W. Contemporary High Performance Computing: From Petascale Toward Exascale (Ed. Vetter J S). Boca Raton: CRC Press, 2013. 75.
[137] Xu J, Qi H, Fang X, Lu L, Ge W, Wang X, Ming X, Chen F, He X, Li J. Particuology, 2011, 9: 446.
[138] Longmore J P, Marais P, Kuttel M M. Powder Technol., 2013, 235: 983.
[139] Zhang L, Quigley S F, Chan A H C. Adv. Eng. Softw., 2013, 60: 70.
[140] Govender N, Wilke D N, Kok S, Els R. Comput. Appl. Math., 2014, 270: 386.
[141] Lu L, Gu Z, Lei K, Wang S, Kase K. Particuology, 2010, 8 (2): 127.
[142] Raschdorf S, Kolonko M. Int. J. Numer. Methods Eng., 2011, 85 (5): 625.
[143] He K, Dong S, Zhou Z. Phys. Rev. E, 2007, 75 (3): 036710.
[144] Ogarko V, Luding S. Comput. Phys. Commun., 2012, 183 (4): 931.
[145] Zhang J, Behringer R P, Goldhirsch I. Prog. Theor. Phys. Suppl., 2010, 184: 16.
[146] Sakai M, Yamada Y, Shigeto Y, Shibata K, Kawasaki V M, Koshizuka S. Int. J. Numer. Meth. Fluids, 2010, 64: 1319.
[147] Miehe C, Dettmar J, Zäh D. Int. J. Numer. Methods Eng., 2010, 83 (8/9): 1206.
[148] Andrade J E, Avila C F, Hall S A, Lenoir N, Viggiani G. J. Mech. Phys. Solids, 2011, 59 (2): 237.
[149] Nitka M, Combe G, Dascalu C, Desrues J. Granul. Matter, 2011, 13 (3): 277.
[150] Kozicki J, Donzé F V. Comput. Meth. Appl. Mech. Eng., 2008, 197 (49): 4429.
[151] Kloss C, Goniva C, Hager A, Amberger S, Pirker S. Prog. Comput. Fluid Dyn., 2012, 12 (2/3): 140.
[152] Weatherley D, Hancock W, Boros V, Abe S. ESyS-Particle Tutorial and User's Guide Version 2.3, 2014.

[1] 覃成鹏, 杨宁. 多相分散体系中气泡/液滴聚并和破碎的群平衡模拟[J]. 化学进展, 2016, 28(8): 1207-1223.