English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1537-1550 DOI: 10.7536/PC140459 前一篇   后一篇

• 综述与评论 •

环肽对金属离子的识别作用

杨楚汀, 韩军, 罗阳明, 胡胜*, 汪小琳   

  1. 中国工程物理研究院核物理与化学研究所 绵阳 621900
  • 收稿日期:2014-04-01 修回日期:2014-06-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 胡胜 E-mail:husheng@126.com
  • 基金资助:

    国家自然科学基金项目(No. 91326110)和中国工程物理研究院学科909项目资助

Metal Ion Recognition Functions Based on Cyclopeptides

Yang Chuting, Han Jun, Luo Yangming, Hu Sheng*, Wang Xiaolin   

  1. Institute of Nuclear Physics and Chemistry, China Academy of Engineering Physics, Mianyang 621900, China
  • Received:2014-04-01 Revised:2014-06-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 91326110) and 909 project of CAEP

将多肽链环化,进行构象限定,是改善肽的生物稳定性和生理活性的重要途径之一。近年来,以环肽为模型研究生物大分子和金属离子相互作用,模拟生物分子对金属离子的特异选择性逐渐引起人们的关注。本文从金属离子的不同类型出发,介绍了环肽对碱金属和碱土金属、过渡金属(Cu,Zn和Ni)、重金属、镧系金属离子识别作用的研究进展;重点讨论了环肽的环化结构对金属离子亲合力和选择性的影响;并简要评述了环肽识别作用研究所面临的挑战和运用前景。

The conformational variability of linear peptides affects the strength and selectivity of receptor binding. In contrast, cyclopeptides adopt more rigid and conformationally constrained structures than their linear analogues, as the cyclization could lead to a restricted mobility of the peptide skeleton. Therefore, the cyclization is one of the important ways to improve the biological stability and physiological activity of the peptides. Furthermore, cyclopeptides are important building blocks in molecular material chemistry and life science, working in diverse areas such as physiological processes, nanoscale materials, and supramolecular chemistry. They are used to study the physiological process, construct transmembrane nanotube channels in order to transport molecules and ions, recognize molecules, anions, and cations. In recent years, the researchers pay more attention to the interaction of biological molecules and metal ions, especially with cyclopeptides as the models. In this paper, we review the research progress of the metal ion recognition functions of cyclopeptides. Alkali and alkaline earth metals, transition metals (such as Cu, Zn and Ni), heavy metals, and lanthanides are discussed. A major focus has been on the influencing factors to the metal ion affinity and selectivity. The challenges and prospects of the metal ion recognition are also discussed concisely.

Contents
1 Introduction
2 The research progress of the metal ion recognition functions of cyclopeptides
2.1 Alkali and alkaline earth metals
2.2 Transition metals
2.3 Heavy metals
2.4 Lanthanides
3 Outlook

中图分类号: 

()

[1] Ovchinnikov Y A, Ivanov V T. Tetrahedron, 1975, 31: 2177.
[2] Tan N H, Zhou J. Chem. Rev., 2006, 106: 840.
[3] Gursoy R N, Siahaan T J. J. Pept. Res., 1999, 53: 414.
[4] Tosteson D C, Cook P, Andreoli T, Tieffenbenberg M. J. Gen. Physiol., 1967, 40: 2513.
[5] Bhattacharyya P, Epstein W, Silver S. Proc. Natl. Acad. Sci. U. S. A., 1971, 68: 1488.
[6] Varma S, Sabo D, Rempe S B. J. Mol. Biol., 2008, 376: 13.
[7] Deber C M, Bartman B, Blout E R. Peptides: Chemistry, Structure and Biology. Ann Arbor, Mich: Ann Arbor Science Publishers, 1975.203.
[8] Madison V, Deber C M, Blout E R. J. Am. Chem. Soc., 1977, 99: 4788.
[9] Rose M C, Henkens R W. Biochim. Eiophys. Acta, 1974, 372: 426.
[10] Wieland T, Faulstich H, Burgermeister W, Otting W, Mohle W, Shemyakin M M, Ovchinikov Y A, Ivanov V T, Malenkov G G. FEBS Lett., 1970, 9: 89.
[11] 穆林静(Mu L J), 黄海(Huang H), 何家骐(He J Q), 张宁(Zhang N), 程津培(Cheng J P). 科学通报(Chinese Science Bulletin),2000, 45 (20): 2175.
[12] García-Echeverría C, Albericio F, Giralt E, Pons M. J. Am. Chem. Soc., 1993, 115: 11663.
[13] Huang H, Mu L, He J, Cheng J P. Tetrahedron Letters, 2002, 43: 2255.
[14] Huang H, Mu L, He J, Cheng J P. J. Org. Chem., 2003, 68: 7605.
[15] Chowdhury S, Schatte G, Kraatz H B. Eur. J. Inorg. Chem., 2006, 988.
[16] Strauss J, Daub J. Org. Lett., 2002, 4: 683.
[17] Ishida H, Qi Z, Sokabe M, Donowaki K, Inoue Y. J. Org. Chem., 2001, 66: 2978.
[18] Ghadiri M R, Granja J R, Buehler L K. Nature, 1994, 369: 301.
[19] Sanchez-Quesada J, Isler M P, Ghadiri M R. J. Am. Chem. Soc., 2002, 124: 10004.
[20] Clark T D, Buehler L K, Ghadiri M R. J. Am. Chem. Soc., 1998, 120: 651.
[21] García-Fandio R, Amorín M, Castedo L, Granja J R. Chem. Sci., 2012, 3: 3280.
[22] Hwang H, Schatz G C, Ratner M A. J. Phys. Chem. B, 2006, 110(51): 26448.
[23] Dehez F, Tarek M, Chipot C. J. Phys. Chem. B, 2007, 111(36): 10633.
[24] Delemotte L, Dehez F, Treptow W. J. Phys. Chem. B, 2008, 112 (18): 5547.
[25] Montenegro J, Ghadiri M R., Granja J R. Acc. Chem. Res., 2013, 46 (12): 2955.
[26] Liu S, Pentelute B L, Kent S B H. Angew. Chem. Int. Ed., 2012, 51: 993.
[27] Avital-Shmilovici M, Mandal K, Gates Z P, Phillips N B, Weiss M A, Kent S B H. J. Am. Chem. Soc., 2013, 135: 3173.
[28] Tan Z, Shang S, Danishefsky S J. Proc. Natl. Acad. Sci. U.S.A., 2011, 108: 4297.
[29] Zheng J S, Chang H N, Wang F L, Liu L. J. Am. Chem. Soc., 2011, 133: 11080.
[30] Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2012, 51: 10347.
[31] Richardson J S, Thomas K A, Rubin B H, Richardson D C. Proc. Natl. Acad. Sci. U. S. A., 1975, 72: 1349.
[32] Coleman P H, Freeman H C, Guss J M, Murata M, Norris V A, Ramshaw J A, Ventakappa M P. Narure, 1978, 272: 319.
[33] Sovago I, Osz K. Dalton Trans., 2006, 3841.
[34] Laussac J P, Robert A, Haran R, Sarkar R. Inorg. Chem., 1986, 25: 2160.
[35] Brasuń J, Gabbiani C, Ginanneschi M, Messori L, Orfeic M, DS wiatek-Koz?owska J. J. Inorg. Biochem., 2004, 98: 2016.
[36] Brasuń J, Matera-Witkiewicz A, O?dziej S, DS wiatek- Koz?owska J, Messori L, Gabbiani C, Orfei M, Ginanneschi M. J. Inorg. Biochem., 2007, 101: 452.
[37] Brasuń J, Matera-Witkiewicz A, Kamysz E, Kamyszc W, O?dziej S. Polyhedron, 2010, 29: 1535.
[38] Brasuń J, Matera-Witkiewicz A, O?dziej S, Pratesi A, Ginanneschic M, Messori L. J. Inorg. Biochem., 2009, 103: 813.
[39] Kotynia A, Bielińska S, Kamyszb W, Brasuń J. Dalton Trans., 2012, 41: 12114.
[40] Fragoso A, Lamosa P, Delgado R, Iranzo O. Chem. Eur. J., 2013, 19: 2076.
[41] Fragoso A, Delgado R, Iranzo O. Dalton Trans., 2013, 42: 6182.
[42] Boturyn D, Defrancq E, Dolphin G T, Garcia J, Labbe P, Renaudet O, Dumy P. J. Pept. Sci., 2008, 14: 224.
[43] Robinson J A. Acc. Chem. Res., 2008, 41: 1278.
[44] Harford C, Sarkar B. Acc. Chem. Res., 1997, 30: 123.
[45] Jin Y, Cowan J A. J. Am. Chem. Soc., 2005, 127: 8408.
[46] Joyner J C, Reichfield J, Cowan J A. J. Am. Chem. Soc., 2011, 133: 15613.
[47] Kosh P, Neupane K P, Aldous A R, Kritzer J A. Inorg. Chem., 2013, 52: 2729.
[48] Sovago I, Kallay C, Varnagy K. Coord. Chem. Rev., 2012, 256: 2225.
[49] Zhang L, Luo Z, Zhang L, Jia L, Wu L. J. Biol. Inorg. Chem., 2013, 18: 277.
[50] Rousselot-Pailley P, Seneque O, Lebrun C, Crouzy S, Boturyn D, Dumy P, Ferrand M, Delangle P. Inorg. Chem., 2006, 45: 5510.
[51] Bertram A, Pattenden G. Nat. Prod. Rep., 2007, 24: 18.
[52] Comba P, Dovalil N, Gahan L R, Hanson G R, Westphal M. Dalton Trans., 2014, 43: 1935.
[53] Michael S F, Kilfoil V J, Schmidt M H, Amann B T, Berg J M. Proc. Natl. Acad. Sci. U. S. A., 1992, 89: 4796.
[54] Grishin N V. Nucleic Acids Res., 2001, 29: 1703.
[55] Brown R S, Sanders C, Argos P. FEBS Lett., 1985, 186: 271.
[56] Rebar E, Pabo C O. Science, 1994, 263: 671.
[57] Tuchscherer G, Lehmann C, Mathieu M. Angew. Chem. Int. Ed., 1998, 37: 2990.
[58] Berg J M, Merkle D L. J. Am. Chem. Soc., 1989, 111: 3759.
[59] Sénèque O, Bourlès E, Lebrun V, Bonnet E, Dumy P, Latour J M. Angew. Chem. Int. Ed., 2008, 47: 6888.
[60] Janda I, Devedjiev Y, Derewenda U, Dauter Z, Bielnicki J, Cooper D R, Graf P C F, Joachimiak A, Jakob U, Derewenda Z S. Structure, 2004, 12: 1901.
[61] Jakob U, Eser M, Bardwell J C A. J. Biol. Chem., 2000, 275: 38302.
[62] Jacques A, Mettra B, Lebrun V, Latour J M, Sénèque O. Chem. Eur. J., 2013, 19: 3921.
[63] Du Vigneaud V, Ressler C, Trippett S. J. Biol. Chem., 1953, 205: 949.
[64] Liu D F, Seuthe A B, Ehrler O T, Zhang X H, Wyttenbach T, Hsu J F, Bowers M T. J. Am. Chem. Soc., 2005, 127: 2024.
[65] Wyttenbach T, Liu D F, Bowers M T. J. Am. Chem. Soc., 2008, 130: 5993.
[66] Halcrow M, Christou G. Chem. Rev., 1994, 94: 2421.
[67] Witkowska D, Rowińska- DZ· yrek M, Valensin G, Koz?owski H. Coord. Chem. Rev., 2012, 256: 133.
[68] Peana M, Medicia S, Nurchib V M, Crisponi G, Zoroddu M A. Coord. Chem. Rev., 2013, 257: 2737.
[69] Long E C. Acc. Chem. Res., 1999, 32: 837.
[70] Liang Q, Ananias D C, Long E C. J. Am. Chem. Soc., 1998, 120: 248.
[71] Ngyen H, Orlamuender M, Pretzel D, Agricola I, Sternberg U, Reissmann S. J. Pept. Sci., 2008, 14(9): 1010.
[72] Liu C C, Mack A V, Tsao M L, Mills J H, Lee H S, Choe H, Farzan M, Schultz P G, Smider V V. Proc. Natl. Acad. Sci. U.S.A., 2008, 105: 17688.
[73] Liu C C, Mack A V, Brustad E M, Mills J H, Groff D, Smider V V, Schultz P G. J. Am. Chem. Soc., 2009, 131: 9616.
[74] Xie J, Liu W, Schultz P G. Angew. Chem. Int. Ed., 2007, 46: 9239.
[75] Day J W, Kim C H, Smider V V, Schultz P G. Bioorg. Med. Chem. Lett., 2013, 23: 2598.
[76] Czarnik A W. ACS Symposium Series 538. Washinghton, DC: Czarnik A W. 1993. Chap. 1.
[77] Ghosh P, Bharadwaj P K, Mandal S, Ghosh S. J. Am. Chem. Soc., 1996, 118: 1553.
[78] Vazquez M E, Rothman D M, Imperiali B. Org. Biomol. Chem., 2004, 2: 1965.
[79] Ngu-Schwemlein M, Butko P, Cook B, Whigham T J. Peptide Res., 2006, 66(s1): 72.
[80] Ngu-Schwemlein M, Gilbert W, Askew K, Schwemlein S. Bioorg. Med. Chem., 2008, 16: 5778.
[81] Steele R A, Opella S J. Biochemistry, 1997, 36: 6885.
[82] Banci L, Bertini I, Ciofi-Baffoni S, Finney L A, Outten E. O'Halloran T V. J. Mol. Biol., 2002, 323: 883.
[83] Veglia G, Porcelli F, DeSilva T, Prantner A, Opella S J. J. Am. Chem. Soc., 2000, 122: 2389.
[84] Urvoas A, Moutiez M, Estienne C, Couprie J, Mintz E, Le Clainche L. Eur. J. Biochem., 2004, 271: 993.
[85] Pufahl R A, Singer C P, Peariso K L, Lin S J, Schmidt P J, Fahrni C J, Culotta V C, Penner-Hahn J E, O'Halloran T V. Science, 1997, 278: 853.
[86] Hou Z, Mitra B. J. Biol. Chem., 2003, 278: 28455.
[87] Sénèque O, Crouzy S, Boturyn D, Dumy P, Ferrand M, Delangle P. Chem. Commun., 2004, 769.
[88] Pujol A M, Cuillel M, Renaudet O, Lebrun C, Charbonnier P, Cassio D, Gateau C, Dumy P, Mintz E, Delangle P. J. Am. Chem. Soc., 2011, 133: 286.
[89] Wu J, Nantz M H, Zern M A. Front. Biosci., 2002, 7: 717.
[90] Lee Y C, Lee R T. Acc. Chem. Res., 1995, 28: 321.
[91] Caravan P. Chem. Soc. Rev., 2006, 35: 512.
[92] Zhang S R, Merritt M, Woessner D E, Lenkinski R E, Sherry A D. Acc. Chem. Res., 2003, 36: 783.
[93] Bünzli J C, Piguet C. Chem. Soc. Rev., 2005, 34: 1048.
[94] Bünzli J C. Acc. Chem. Res., 2006, 39: 53.
[95] MacManus J P, Hogue C W, Marsden B J, Sikorska M, Szabo A G. J. Biol. Chem., 1990, 265: 10358.
[96] Hogue C W, MacManus J P, Banville D, Szabo A G. J. Biol. Chem., 1992, 267: 13340.
[97] Kovacic R T, Welch J T, Franklin S J. J. Am. Chem. Soc., 2003, 125: 6656.
[98] Caravan P, Greenwood J M, Welch J T, Franklin S J. Chem.Commun., 2003, 2574.
[99] Nitz M, Sherawat M, Franz K J, Peisach E, Allen K N, Imperiali B. Angew. Chem. Int. Ed., 2004, 43: 3682.
[100] Whnert J, Franz K J, Nitz M, Imperiali B, Schwalbe H. J. Am. Chem. Soc., 2003, 125: 13338.
[101] Barthelmes K, Reynolds A M, Peisach E, Jonker H R A, De Nunzio N J, Allen K N, Imperiali B, Schwalbe H. J. Am. Chem. Soc., 2011, 133: 808.
[102] Nitz M, Franz K J, Maglathlin R L, Imperiali B. ChemBioChem, 2003, 4: 272.
[103] Bonnet C S, Fries P H, Crouzy S, Sénèque O, Cisnetti F, Boturyn D, Dumy P, Delangle P. Chem. Eur. J., 2009, 15: 7083.
[104] LeClainche L, Plancque G, Amekraz B, Moulin C, Pradines-Lecomte C, Peltier G, Vita C. J. Biol. Inorg. Chem., 2003, 8: 334.
[105] Fukuzumi T, Ju L, Bode J W. Org. Biomol. Chem., 2012, 10: 5837.
[106] Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50: 7645.
[107] Tam J P, Wong C T. J. Biol. Chem., 2012, 287: 27020.
[108] Cui H K, Guo Y, He Y, Wang F L, Chang H N, Wang Y J, Wu F M, Tian C L, Liu L. Angew. Chem. Int. Ed., 2013, 52: 9558.
[109] Wong C T T, Lam H Y, Song T, Chen G H, Li X C. Angew. Chem. Int. Ed. 2013, 52: 10212.
[110] Crich D, Sharma I. Angew. Chem. Int. Ed., 2009, 48: 7591.

[1] 陈戈慧, 马楠, 于帅兵, 王娇, 孔金明, 张学记. 可卡因免疫及适配体生物传感器[J]. 化学进展, 2023, 35(5): 757-770.
[2] 鲍艳, 许佳琛, 郭茹月, 马建中. 基于微纳结构的高灵敏度柔性压力传感器[J]. 化学进展, 2023, 35(5): 709-720.
[3] 赵京龙, 沈文锋, 吕大伍, 尹嘉琦, 梁彤祥, 宋伟杰. 基于人体呼气检测应用的气体传感器[J]. 化学进展, 2023, 35(2): 302-317.
[4] 钟衍裕, 王正运, 刘宏芳. 抗坏血酸电化学传感研究进展[J]. 化学进展, 2023, 35(2): 219-232.
[5] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[6] 卢继洋, 汪田田, 李湘湘, 邬福明, 杨辉, 胡文平. 电喷印刷柔性传感器[J]. 化学进展, 2022, 34(9): 1982-1995.
[7] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[8] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[9] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[10] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[11] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[12] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[13] 林瑜, 谭学才, 吴叶宇, 韦富存, 吴佳雯, 欧盼盼. 二维纳米材料g-C3N4在电化学发光中的应用研究[J]. 化学进展, 2022, 34(4): 898-908.
[14] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[15] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
阅读次数
全文


摘要

环肽对金属离子的识别作用