English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1586-1595 DOI: 10.7536/PC140456 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池SnS2基负极材料

刘欣1, 赵海雷*1,3, 解晶莹*2, 王可2, 吕鹏鹏1, 高春辉1   

  1. 1. 北京科技大学材料科学与工程学院 北京 100083;
    2. 上海空间电源研究所 上海 200245;
    3. 新能源材料与技术北京市重点实验室 北京 100083
  • 收稿日期:2014-04-01 修回日期:2014-06-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 赵海雷, 解晶莹 E-mail:hlzhao@ustb.edu.cn;xiejingying2007@126.com
  • 基金资助:

    国家自然科学基金项目(No. 21273019)、国家重点基础研究发展计划(973)项目(No. 2013CB934003)、国家高技术研究发展计划(863)项目(No. 2013AA050902)、上海市科技人才计划项目(No. 12XD1421900)和上海市科委科技创新项目(No. 12dz1200503,13dz2280200)资助

SnS2 Based Anode Materials for Lithium-Ion Batteries

Liu Xin1, Zhao Hailei*1,3, Xie Jingying*2, Wang Ke2, Lv Pengpeng1, Gao Chunhui1   

  1. 1. School of Materials Science and Engineering, University of Science and Technology Beijing, Beijing 100083, China;
    2. Shanghai Institute of Space Power Sources, Shanghai 200245, China;
    3. Beijing Key Lab of New Energy Materials and Technology, Beijing 100083, China
  • Received:2014-04-01 Revised:2014-06-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21273019), the National Key Basic Research Program of China (973 Program) (No.2013CB934003), the National High Techndogy Research and Development Program of China (863 Program) (No. 2013AA050902), the Shanghai Science and Technology Talent Project Funds (No.12XD1421900) and the Shanghai Science and Technology Development Funds (No. 12dz1200503, 13dz2280200)

随着应用范围的逐渐扩大,锂离子电池对具有高比容量、长循环寿命以及优异倍率性能的新型正负极材料的需求日益迫切。SnS2材料因具有独特的层状结构和高的理论比容量而被视作潜在的高比容量负极材料,但其也存在首次不可逆容量较大、导电率低、充放电过程中体积变化较大等问题。本文综述了SnS2负极材料的研究历程以及最新研究进展,介绍了SnS2负极材料的基本性质,具体论述了SnS2电化学性能改进的相关措施,主要包括控制纳米SnS2微观形貌、制备SnS2/C及SnS2/氧化物复合材料、掺杂、一体化电极以及优化粘结剂等。文章同时总结了水热(溶剂热)法各工艺参数(原料种类、浓度、比例、溶液pH值、水热温度及时间等)对制备SnS2纳米材料及SnS2/C复合材料形貌结构及电化学性能的影响,并对目前SnS2材料仍然存在的问题进行了分析。研究表明,通过制备片状、花状等高比表面积的SnS2纳米材料,可明显提升其循环性能;将石墨烯等碳材料与SnS2复合,有助于提高材料的结构稳定性及导电性,进而改善电极的循环及倍率性能。经工艺优化后的SnS2/graphene复合材料具有高的比容量(大于1000 mAh/g)、稳定的循环性能和优秀的倍率特性,是一种非常有研究价值的高比容量锂离子电池负极材料。

With the expanding of lithium-ion battery applications, novel cathode/anode materials with high capacity, long cycle life and excellent rate capability are in great demand. SnS2 is deemed to be one of potential alternative anode materials for its unique layer structure and high theoretical capacity. However, it suffers from large initial irreversible capacity, low electrical conductivity and huge volume change during charge/discharge process, which limit its practical application. In the present paper, the development history and latest progress of SnS2 anode material are reviewed. The basic properties of SnS2 are described. The approaches for improving the electrochemical performance of SnS2 are summarized, including micromorphology control of nanoparticles, preparation of SnS2/C and SnS2/oxide composites, bulk-doping, making integrative electrode, optimizing binder, etc. The influences of processing parameters (raw material, concentration, ratio, pH value, hydrothermal temperature and time) of hydrothermal (solovthermal) methods on the structure and electrochemical performance of the prepared SnS2 and SnS2/C composites are expounded. Besides, the problems associated with SnS2 anode materials are also discussed. Nanostructured SnS2 with high specific area, such as sheet- and flowerlike-shaped particles, is proved to be beneficial for cycle performance. Compositing SnS2 with different kinds of carbon can enhance the structure stability as well as electrical conductivity, and hence improve the cycle performance and rate capability of electrode. The optimized SnS2/graphene composite exhibits high specific capacity (over 1000 mAh/g), stable cycling performance and excellent rate capability, which make it a promising high capacity anode material for lithium-ion batteries.

Contents
1 Introduction
2 Basic properties of SnS2 anode materials
3 Approaches for improving the electrochemical performance of SnS2 materials
3.1 Early studies
3.2 Micromorphology control of SnS2 nanomaterials
3.3 SnS2/C composite materials
3.4 Other methods
4 Conclusion and outlook

中图分类号: 

()

[1] Goodenough J B, Park K S. J. Am. Chem. Soc., 2013, 135: 1167.
[2] Scrosati B, Hassoun J, Sun Y K. Energy Environ. Sci., 2011, 4: 3287.
[3] Etacheri V, Marom R, Elazari R, Salitra G, Aurbach D. Energy Environ. Sci., 2011, 4: 3243.
[4] McDowell M T, Lee S W, Nix W D, Cui Y. Adv. Mater., 2013, 25: 4966.
[5] Zhang W J. J. Power Sources, 2011, 196: 13.
[6] Wu H, Cui Y. Nano Today, 2012, 7: 414.
[7] Liang C, Gao M, Pan H, Liu Y, Yan M. J. Alloys Compd., 2013, 575: 246.
[8] Yuan S, Zhou Z, Li G. CrystEngComm, 2011, 13: 4709.
[9] Su L, Zhong Y, Zhou Z. J. Mater. Chem. A, 2013, 1: 15158.
[10] Liu L, Li Y, Yuan S, Ge M, Ren M, Sun C, Zhou Z. J. Phys. Chem. C, 2010, 114: 251.
[11] Yuan S, Li J, Yang L, Su L, Liu L, Zhou Z. ACS Appl. Mater. Interfaces, 2011, 3: 705.
[12] Mi L, Chen Y, Wei W, Chen W, Houb H, Zheng Z. RSC Adv., 2013, 3: 17431.
[13] Liu L, Yuan Z, Qiu C, Liu J. Solid State Ionics, 2013, 241: 25.
[14] Stephenson T, Li Z, Olsen B, Mitlin D. Energy Environ. Sci., 2014, 7: 209.
[15] 黄震雷(Huang Z L), 应皆荣(Ying J R), 孙莞柠(Sun W N), 姜长印(Jiang C Y), 万春荣(Wan C R). 稀有金属材料与工程(Rare Metal Materials and Engineering), 2010, 39(1): 182.
[16] Liu L, Liu H, Kou H, Wang Y, Zhou Z, Ren M, Ge M, He X. Cryst. Growth Des., 2009, 9: 113.
[17] Chakrabarti A, Lu J, McNamara A M, Kuta L M, Stanley S M, Xiao Z, Maguire J A, Hosmane N S. Inorg. Chim. Acta, 2011, 374: 627.
[18] Im H S, Myung Y, Cho Y J, Kim C H, Kim H S, Back S H, Jung C S, Jang D M, Lim Y R, Park J, Ahnb J P. RSC Adv., 2013, 3: 10349.
[19] Geng H, Su Y, Wei H, Xu M, Wei L, Yang Z, Zhang Y. Mater. Lett., 2013, 111: 204.
[20] Cai P, Ma D K, Liu Q C, Zhou S M, Chen W, Huang S M. J. Mater. Chem. A, 2013, 1: 5217.
[21] Zhang Y C, Du Z N, Li S Y, Zhang M. Appl. Catal. B: Environ., 2010, 95: 153.
[22] Yang Z, Ren Y, Zhang Y, Li J, Li H, Huang X, Hu X, Xu Q. Biosens. Bioelectron., 2011, 26: 4337.
[23] Li J, Yang Z, Tang Y, Zhang Y, Hu X. Biosens. Bioelectron., 2013, 41: 698.
[24] Bian X, Lu X, Xue Y, Zhang C, Kong L, Wang C. J. Colloid Interface Sci., 2013, 406: 37.
[25] Morales J, Perez-Vicente C, Tirado J L. Solid State Ionics, 1992, 51: 133.
[26] Clerc D G, Cleary D A. Chem. Mater., 1994, 6: 13.
[27] Julien C, Perez-Vicente C. Solid State Ionics, 1996, 89: 337.
[28] Brousse T, Lee S M, Pasquereau L, Defives D, Schleich D M. Solid State Ionics, 1998, 113: 51.
[29] Wang L, Zhuoa L, Yu Y, Zhao F. Electrochim. Acta, 2013, 112: 439.
[30] Lefebvre-Devos I, Olivier-Fourcade J, Jumas J C, Lavela P. Phys. Rev. B, 2000, 64: 3110.
[31] Momma T, Shiraishi N, Yoshizawa A, Osaka T, Gedanken A, Zhu J, Sominski L. J. Powder Sources, 2001, 97: 198.
[32] Mukaibo H, Yoshizawa A, Momma T, Osaka T. J. Power Sources, 2003, 119: 60.
[33] Kim T J, Kim C, Son D, Choi M, Park B. J. Power Sources, 2007, 167: 529.
[34] Seo J W, Jang J T, Park S W, Kim C, Park B, Cheon J. Adv. Mater., 2008, 20: 4269.
[35] Zhai C, Du N, Zhang H, Yang D. Chem. Commun., 2011, 47: 1270.
[36] Ma J, Lei D, Mei L, Duan X, Li Q, Wang T, Zheng W. CrystEngComm, 2012, 14: 832.
[37] 马琳(Ma L), 李辉(Li H), 常焜(Chang K), 李赫(Li H), 陈卫祥(Chen W X). 浙江大学学报(工学版)(Journal of Zhejiang University (Engineering Science)), 2011, 45: 354.
[38] Liu S, Yin X, Chen L, Li Q, Wang T. Solid State Sci., 2010, 12: 712.
[39] Zai J, Wang K, Su Y, Qian X, Chen J. J. Power Sources, 2011, 196: 3650.
[40] Ma J, Lei D, Duan X, Li Q, Wang T, Cao A, Maod Y, Zheng W. RSC Adv., 2012, 2: 3615.
[41] Zai J, Qian X, Wang K, Yu C, Tao L, Xiao Y, Chen J. CrystEngComm., 2012, 14: 1364.
[42] Lei D, Zhang M, Qu B, Ma J, Li Q, Chen L, Lu B, Wang T. Electrochim. Acta, 2013, 106: 386.
[43] Wu Q, Jiao L, Du J, Yang J, Guo L, Liu Y, Wang Y, Yuan H. J. Power Sources, 2013, 239: 89.
[44] Zou Y, Wang Y. Chem. Eng. J., 2013, 229: 183.
[45] 周欢(Zhou H), 柴波(Chai B), 廖翰韬(Liao H T), 张献旺(Zhang X W). 人工晶体学报(Journal of Synthetic Cyrstal), 2013, 42: 2627.
[46] Gou X L, Chen J, Shen P W. Mater. Chem. Phys., 2005, 93: 557.
[47] Wang J, Liu J, Xu H, Ji S, Wang J, Zhou Y, Hodgsonc P, Li Y. J. Mater. Chem. A, 2013, 1: 1117.
[48] Xia J, Li G, Mao Y, Li Y, Shen P, Chen L. CrystEngComm, 2012, 14: 4279.
[49] Wang Q, Wang D, Wu M, Liu B, Chen J, Wang T, Chen J. J. Phys. Chem. Solids, 2011, 72: 630.
[50] Zhang Y Z, Pang H, Sun Y, Lai W Y, Wei A, Huang W. Int. J. Electrochem. Sci., 2013, 8: 3371.
[51] Su L, Jing Y, Zhou Z. Nanoscale, 2011, 3: 3967.
[52] Kim H S, Chung Y H, Kang S H, Sung Y E. Electrochim. Acta, 2009, 54: 3606.
[53] Zhai C, Du N, Zhang H, Yu J, Yang D. ACS Appl. Mater. Inter., 2011, 3: 4067.
[54] Li J, Wu P, Lou F, Zhang P, Tang Y, Zhou Y, Lu T. Electrochim. Acta, 2013, 111: 862.
[55] Du Y, Yin Z, Rui X, Zeng Z, Wu X J, Liu J, Zhu Y, Zhu J, Huang X, Yan Q, Zhang H. Nanoscale, 2013, 5: 1456.
[56] He M, Yuan L X, Huang Y H. RSC Adv., 2013, 3: 3374.
[57] Sun H, Ahmad M, Luo J, Shi Y, Shen W, Zhu J. Mater. Res. Bull., 2014, 49: 319.
[58] Jing Y, Zhou Z, Cabrera C R, Chen Z. J. Mater. Chem. A, 2014, DOI: 10.1039/C4TA01033G.
[59] Chang K, Wang Z, Huang G, Li H, Chen W, Lee J Y. J. Power Sources, 2012, 201: 259.
[60] Ji L, Xin H L, Kuykendall T R, Wu S L, Zheng H, Rao M, Cairns E J, Battaglic V, Zhang Y. Phys. Chem. Chem. Phys., 2012, 14: 6981.
[61] Zhang M, Lei D, Yu X, Chen L, Li Q, Wang Y, Wang T, Cao G. J. Mater. Chem., 2012, 22: 23091.
[62] Yin J, Cao H, Zhou Z, Zhang J, Qu M. J. Mater. Chem., 2012, 22: 23963.
[63] Zhuo L, Wu Y, Wang L, Yu Y, Zhang X, Zhao F. RSC Adv., 2012, 2: 5084.
[64] Luo B, Fang Y, Wang B, Zhou J, Song H, Zhi L. Energy Environ. Sci., 2012, 5: 5226.
[65] Sathish M, Mitani S, Tomai T, Honma I. J. Phys. Chem. C, 2012, 116: 12475.
[66] Shen C, Ma L, Zheng M, Zhao B, Qiu D, Pan L, Cao J, Shi Y. J. Solid State Electrochem., 2012, 16: 1999.
[67] Sathish M, Mitani S, Tomai T, Unemoto A, Honma I. J. Solid State Electrochem., 2012, 16: 1767.
[68] Jiang Z, Wang C, Du G, Zhong Y J, Jiang J Z. J. Mater. Chem., 2012, 22: 9494.
[69] Liu S, Lu X, Xie J, Cao G, Zhu T, Zhao X. ACS Appl. Mater. Inter., 2013, 5: 1588.
[70] Jiang J, Feng Y, Mahmood N, Liu F, Hou Y. Sci. Adv. Mater., 2013, 5: 1667.
[71] Mei L, Xu C, Yang T, Ma J, Chen L, Li Q, Wang T. J. Mater. Chem. A, 2013, 1: 8658.
[72] Jiang X, Yang X, Zhu Y, Shen J, Fan K, Li C. J. Power Sources, 2013, 237: 178.
[73] Du N, Wu X, Zhai C, Zhang H, Yang D. J. Alloys Compd., 2013, 580: 457.
[74] Chen P, Su Y, Liu H, Wang Y. ACS Appl. Mater. Inter., 2013, 5: 12073.
[75] Zhang Q, Li R, Zhang M, Zhang B, Gou X. Electrochim. Acta, 2014, 115: 425.
[76] Wu P, Du N, Zhang H, Liu J, Chang L, Wang L, Yang D, Jiang J Z. Nanoscale, 2012, 4: 4002.
[77] Chang K, Chen W X, Li H, Li H. Electrochim. Acta, 2011, 56: 2856.
[78] Shi W, Lu B. Electrochim. Acta, 2014, 133: 247.
[79] Wang Q, Huang Y, Miao J, Zhao Y, Wang Y. Electrochim. Acta, 2013, 93: 120.
[80] Wang Q, Huang Y, Miao J, Zhao Y, Zhang W, Wang Y. J. Am. Ceram. Soc., 2013, 96: 2190.
[81] Liu S, Yin X, Hao Q, Zhang M, Li L, Chen L, Li Q, Wang Y, Wang T. Mater. Lett., 2010, 64: 2350.
[82] Zhong H, Yang G, Song H, Liao Q, Cui H, Shen P, Wang C X. J. Phys. Chem. C, 2012, 116: 9319.
[83] Kang J G, Lee G H, Park K S, Kim S O, Lee S, Kim D W, Park J G. J. Mater. Chem., 2012, 22: 9330.
[84] Zhong H, Zhou P, Yue L, Tang D, Zhang L. J. Appl. Electrochem., 2014, 44: 45.

[1] 朱国辉, 还红先, 于大伟, 郭学益, 田庆华. 废旧锂离子电池选择性提锂[J]. 化学进展, 2023, 35(2): 287-301.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[5] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[6] 李芳远, 李俊豪, 吴钰洁, 石凯祥, 刘全兵, 彭翃杰. “蛋黄蛋壳”结构纳米电极材料设计及在锂/钠离子/锂硫电池中的应用[J]. 化学进展, 2022, 34(6): 1369-1383.
[7] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[8] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[9] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[10] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[11] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[12] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[13] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[14] 王才威, 杨东杰, 邱学青, 张文礼. 木质素多孔碳材料在电化学储能中的应用[J]. 化学进展, 2022, 34(2): 285-300.
[15] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
阅读次数
全文


摘要

锂离子电池SnS2基负极材料