English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1551-1561 DOI: 10.7536/PC140453 前一篇   后一篇

• 综述与评论 •

铁锰氧化物/碳基复合材料的制备及其对水中砷的去除

朱瑾, 楼子墨, 王卓行, 徐新华*   

  1. 浙江大学环境工程系 杭州 310058
  • 收稿日期:2014-04-01 修回日期:2014-05-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 徐新华 E-mail:xuxinhua@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21477108,21277119)资助

Preparation of Iron and Manganese Oxides/Carbon Composite Materials for Arsenic Removal from Aqueous Solution

Zhu Jin, Lou Zimo, Wang Zhuoxing, Xu Xinhua*   

  1. Department of Environmental Engineering, Zhejiang University, Hangzhou 310058, China
  • Received:2014-04-01 Revised:2014-05-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21477108, 21277119)

砷污染问题日益严峻,已威胁到人类的健康,因此,解决水环境中的砷污染问题迫在眉睫。近年来,铁锰氧化物/碳基复合材料因其吸附性能优越和易分离再生等优点而受到广泛的关注。尤其是纳米碳管、石墨烯等新型纳米碳基材料,其比表面积大并具有丰富的官能团,为铁/锰氧化物的负载创造了良好的条件,在其表面可以形成粒径更细的铁/锰氧化物,为砷的吸附提供了更多的吸附点位。本文重点介绍了国内外铁锰氧化物/碳基复合材料的制备方法并比较了各种制备方法的优缺点;讨论了铁锰氧化物/碳基复合材料除砷效果以及其吸附机理;分析了铁锰氧化物/碳基复合材料的再生性能并指出其在实际应用中尚存在的问题,最后展望了该材料处理水体中砷的发展方向。

Arsenic pollution has posed increasingly severe threat to human health, therefore, dealing with the problem of arsenic contamination in water bodies is extremely urgent. Iron and manganese oxides/carbon composite materials, characterized in superior adsorption properties, strong performance of separation and regeneration potentials, have received more and more concern in recent years. Especially, novel carbon-based nano materials such as carbon nanotubes and graphene have high specific surface area and possess a wealth of surface functional groups, providing good conditions for the loading of iron/manganese oxides. Moreover, finer particle size of iron/manganese oxides can be formed on the surface of carbon-based materials, offering more adsorption sites for the adsorption of arsenic. In this paper, we have purposively focused on the synthesis methods of Fe-Mn oxides/carbon composite materials from the domestic and foreign research programs. The advantages and disadvantages of the synthesis of this material were compared, and the removal effects and adsorption mechanisms of arsenic by this adsorbent were elucidated. Furthermore, the regeneration potential of iron and manganese oxides/carbon composite materials was analyzed and the existing deficiencies of this material in practical application were proposed. Finally, the development trend of arsenic removal in water bodies by this new composite material was forecasted.

Contents
1 Introduction
2 Preparation of iron and manganese oxides/carbon composite materials
2.1 Iron/manganese oxides
2.2 Iron and manganese oxides/ activated carbon
2.3 Iron and manganese oxides/carbon nanotubes
2.4 Iron and manganese oxides/ graphene
3 Influencing factors of arsenic removal from water by iron and manganese oxides/carbon composite materials
3.1 Properties of composite materials
3.2 Environmental conditions
4 Adsorption mechanisms of arsenic by iron and manganese oxides/ carbon composite materials
5 Regenerability
6 Conclusion and outlook

中图分类号: 

()

[1] Mohan D, Pittman C U Jr. J. Hazard. Mater., 2007, 142(1/2): 1.
[2] Jain C K, Ali I. Water Res., 2000, 34(17): 4304.
[3] Malik A H, Khan Z M, Mahmood Q, Nasreen S, Bhatti Z A. J. Hazard. Mater., 2009, 168(1): 1.
[4] Sheng T T, Baig S A, Hu Y J, Xue X Q, Xu X H. Arab. J. Chem., 2014, 7(1): 27.
[5] Lin T F, Wu J K. Water Res., 2001, 35(8): 2049.
[6] Guan X H, Du J S, Meng X G, Sun Y K, Sun B, Hu Q H. J. Hazard. Mater., 2012, 215/216: 1.
[7] Dixit S, Hering J G. Environ. Sci. Technol., 2003, 37(18): 4182.
[8] Camacho L M, Parra R R, Deng S G. J. Hazard. Mater., 2011, 189(1/2): 286.
[9] Mishra A K, Ramaprabhu S. Desalination, 2011, 282: 39.
[10] Lv X S, Xue X Q, Jiang G M, Wu D L, Sheng T T, Zhou H Y, Xu X H. J. Colloid Interf. Sci., 2014, 417: 51.
[11] Hua M, Zhang S J, Pan B C, Zhang W M, Lv L, Zhang Q X. J. Hazard. Mater., 2012, 211/212: 317.
[12] Jiang W, Lv J T, Luo L, Yang K, Lin Y F, Hu F B, Zhang J, Zhang S Z. J. Hazard. Mater., 2013, 262: 55.
[13] Lakshmipathiraj P, Narasimhan B R V, Prabhakar S, Raju G B. J. Hazard. Mater., 2006, 136(2): 281.
[14] Hu J, Chen G H, Lo I M C. Water Res., 2005, 39(18): 4528.
[15] Ma J M, Lian J B, Duan X C, Liu X D, Zheng W J. J. Phys. Chem. C, 2010, 114(24): 10671.
[16] Feng L Y, Cao M H, Ma X Y, Zhu Y S, Hu C W. J. Hazard. Mater., 2012, 217/218: 439.
[17] Wang H Q, Yang G F, Li Q Y, Zhong X X, Wang F P, Li Z S, Li Y H. New J. Chem., 2011, 35(2): 469.
[18] Su Q, Pan B C, Wan S L, Zhang W M, Lv L. J. Colloid Interf. Sci., 2010, 349(2): 607.
[19] 常方方(Chang F F), 曲久辉(Qu J H), 刘锐平(Liu R P), 刘会娟(Liu H J), 雷鹏举(Lei P J), 张高生(Zhang G S), 武荣成(Wu R C). 环境科学学报(Acta Scientiae Circumstantiae), 2006, 26(11):1769.
[20] Wu R C, Qu J H, Chen Y S. Water Res., 2005, 39(4):630.
[21] Zhang G S, Liu H J, Liu R P, Qu J H. J. Hazard. Mater., 2009, 168(2/3): 820.
[22] Zhang Q L, Lin Y C, Chen X, Gao N Y. J. Hazard. Mater., 2007, 148(3): 671.
[23] 姜良艳(Jiang L Y), 周仕学(Zhou S X), 王文超(Wang W C), 吴峻青(Wu J Q), 卢国俭(Lu G J). 环境科学学报(Acta Scientiae Circumstantiae), 2008, 28(2): 337.
[24] Yürüm A, Kocaba?-Atakl? Z Ö, Sezen M, Semiat R, Yürüm Y. Chem. Eng. J., 2014, 242: 321.
[25] Liu Z G, Zhang F S, Sasai R. Chem. Eng. J., 2010, 160(1): 57.
[26] Veli D? kovi D? Z, Vukovi D? G D, Marinkovi D? A D, Moldovan M S, Peri D? -Gruji D? A A, Uskokovi D? P S, Risti D? M-D. Chem. Eng. J., 2012, 181/182: 174.
[27] Mishra A K, Ramaprabhu S. J. Phys. Chem. C, 2010, 114(6): 2583.
[28] Huang X P, Pan C X, Huang X T. Mater. Lett., 2007, 61(4/5): 934.
[29] Saleh T A, Agarwal S, Gupta V K. Appl. Catal. B: Environ., 2011, 106(1/2): 46.
[30] Luo C, Tian Z, Yang B, Zhang L, Yan S Q. Chem. Eng. J., 2013, 234: 256.
[31] Tamilarasan P, Ramaprabhu S. AIP Conf. Proc., 2012, 1447(1): 321.
[32] Zhu Y W, Murali S, Cai W W, Li X S, Suk J W, Potts J R, Ruoff R S. Adv. Mater., 2010, 22(35): 3906.
[33] Wang S B, Sun H Q, Ang H M, Tadé M O. Chem. Eng. J., 2013, 226: 336.
[34] 袁小亚(Yuan X Y). 无机材料学报(Journal of Inorganic Materials), 2011, 26(6): 561.
[35] Chandra V, Park J, Chun Y, Lee J W, Hwang I C, Kim K C. ACS Nano, 2010, 4(7): 3979.
[36] Luo X B, Wang C C, Luo S L, Dong R Z, Tu X M, Zeng G S. Chem. Eng. J., 2012, 187: 45.
[37] Li L, Zhou G M, Weng Z, Shan X Y, Li F, Cheng H M. Carbon, 2014, 67: 500.
[38] Sun H M, Cao L Y, Lu L H. Nano Res., 2011, 4(6): 550.
[39] Wang H L, Robinson J T, Li X L, Dai H J. J. Am. Chem. Soc., 2009, 131(29): 9910.
[40] Deng H, Li X L, Peng Q, Wang X, Chen J P, Li Y D. Angew. Chem. Int. Edit., 2005, 44(18): 2782.
[41] Vadahanambi S, Lee S H, Kim W J, Oh I K. Environ. Sci. Technol., 2013, 47(18): 10510.
[42] Zhang S J, Li X Y, Chen J P. Carbon, 2010, 48(1): 60.
[43] Sabbatini P, Rossi F, Thern G, Marajofsky A, de Cortalezzi M M F. Desalination, 2009, 248(1/3): 184.
[44] Mayo J T, Yavuz C, Yean S, Cong L, Shipley H, Yu W, Falkner J, Kan A, Tomson M, Colvin V L. Sci. Technol. Adv. Mat., 2007, 8(1/2): 71.
[45] Jolivet J P, Chanéac C, Tronc E. Chem. Commun., 2004, 481.
[46] Chang Q G, Lin W, Ying W C. J. Hazard. Mater., 2010, 184(1/3): 515.
[47] Maiti A, Basu J K, De S. Chem. Eng. J., 2012, 191: 1.
[48] Lombi E, Wenzel W W, Sletten R S. J. Plant Nutr. Soil Sc., 1999, 162(4): 451.
[49] Vitela-Rodriguez A V, Rangel-Mendez J R. J. Environ. Manage., 2013, 114: 225.
[50] 姚淑华(Yao S H), 贾永锋(Jia Y F), 汪国庆(Wang G Q), 石中亮(Shi Z L). 过程工程学报(The Chinese Journal of Process Engineering), 2009, 9(2): 250.
[51] 盛田田(Sheng T T). 浙江大学硕士论文(Master Dissertation of Zhejiang University), 2014.
[52] Vaughan R L Jr, Reed B E. Water Res., 2005, 39(6): 1005.
[53] Chen W F, Parette R, Zou J Y, Cannon F A, Dempsey B A. Water Res., 2007, 41(9): 1851.
[54] Grossl P R, Eick M, Sparks D L, Goldberg S, Ainsworth C C. Environ. Sci. Technol., 1997, 31(2): 321.
[55] 肖静(Xiao J). 湘潭大学硕士论文(Master Dissertation of Xiangtan University), 2013.

[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[3] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[4] 李美蓉, 唐晨柳, 张伟贤, 凌岚. 纳米零价铁去除水体中砷的效能与机理[J]. 化学进展, 2022, 34(4): 846-856.
[5] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[6] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[7] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.
[8] 朱彬彬, 郑晓慧, 杨光, 曾旭, 邱伟, 徐斌. 氧化石墨烯分离膜机械性能调控[J]. 化学进展, 2021, 33(4): 670-677.
[9] 吕苏叶, 邹亮, 管寿梁, 李红变. 石墨烯在神经电信号检测中的应用[J]. 化学进展, 2021, 33(4): 568-580.
[10] 罗贤升, 邓汉林, 赵江颖, 李志华, 柴春鹏, 黄木华. 多孔氮化石墨烯(C2N)的合成及应用[J]. 化学进展, 2021, 33(3): 355-367.
[11] 祁建磊, 徐琴琴, 孙剑飞, 周丹, 银建中. 石墨烯基单原子催化剂的合成、表征及分析[J]. 化学进展, 2020, 32(5): 505-518.
[12] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[13] 刘杰, 曾渊, 张俊, 张海军, 刘江昊. 三维石墨烯基材料的制备、结构与性能[J]. 化学进展, 2019, 31(5): 667-680.
[14] 耿奥博, 钟强, 梅长彤, 王林洁, 徐立杰, 甘露. 湿法改性石墨烯在制备橡胶复合材料中的应用[J]. 化学进展, 2019, 31(5): 738-751.
[15] 王晓娟, 刘真真, 陈奇, 王小强, 黄方. 石墨烯材料与蛋白质的相互作用[J]. 化学进展, 2019, 31(2/3): 236-244.