English
新闻公告
More
化学进展 2014, Vol. 26 Issue (10): 1741-1751 DOI: 10.7536/PC140442 前一篇   后一篇

所属专题: 酶化学

• 综述与评论 •

转肽酶Sortase A在蛋白质修饰中的应用

谭祥龙1,3, 许玲2, 石景*2, 李宜明*1   

  1. 1. 合肥工业大学医学工程学院 合肥 230009;
    2. 中国科学技术大学化学系 合肥 230026;
    3. 中国药科大学生命科学与技术学院 南京 211198
  • 收稿日期:2014-04-01 修回日期:2014-07-01 出版日期:2014-10-15 发布日期:2014-08-12
  • 通讯作者: 石景, 李宜明 E-mail:shijing@ustc.edu.cn;lym2007@mail.ustc.edu.cn,ymli@hfut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21102083, 21372058)资助

Applications of Transpeptidase Sortase A for Protein Modifications

Tan Xianglong1,3, Xu Ling2, Shi Jing*2, Li Yiming*1   

  1. 1. School of Medical Engineering, Hefei University of Technology, Hefei 230009, China;
    2. Department of Chemistry, University of Science and Technology of China, Hefei 230026, China;
    3. School of Life Science and Technology, China Pharmaceutical University, Nanjing 211198, China
  • Received:2014-04-01 Revised:2014-07-01 Online:2014-10-15 Published:2014-08-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 21102083, 21372058)

近年来,发展蛋白质与多肽的化学选择性连接与修饰方法已成为化学生物学的研究热点。这类方法可以在很大程度上弥补基因工程技术无法制备翻译后修饰蛋白与人工改造蛋白的缺陷,得到目前无法通过生物表达的功能蛋白。20世纪90年代末,人们从金黄色葡萄球菌中分离得到转肽酶Sortase A,它能够选择性识别特异性多肽序列LPXTG,并在特定位点切断氨基酸的肽键进而将其与一个新的肽链连接。该特性使Sortase A有望成为一种高效、通用的蛋白质修饰的工具。与传统的化学合成相比,Sortase催化的化学半合成方法,可以较好的解决化学合成蛋白的尺寸问题。本文就近年来Sortase A在蛋白质修饰及合成中的研究进展进行简要综述。

In recent years, the development of chemical biology has been increasing focusing on efficient and mild methods for chemo-selective ligations and site-specific proteins labeling and modifications. These methods have ability to obtain large amount of post translational modifications and artificial proteins, which could not be acquired by using traditional gene cloning and recombinant protein expression strategy. In later 1990s, a new transpeptidase Sortase A was isolated from Staphylococcus Aureus, which can be used to modify proteins bearing a short recognition sequence (most usually as LPXTG or LPAAG). The active-site Cys residue of Sortase A cleaves between LPXT and G residue to produce a thioester intermediate, which can reacts with a nucleophile containing one to five Gly to afford the ligation product. Base on above-mentioned reason, the Sortase-mediated ligation has been successfully applied to many fields such as C-terminals protein modification, labeling and protein semisynthesis with high efficiency recently. Compared to traditional chemical synthesis,Sortase catalyzed semi-chemical synthesis method can preferably address the size problem of protein chemical synthesis. This mini review reports and discusses the recent important development of protein ligations, labeling and modifications by using Sortase mediated ligation method.

Contents
1 Introduction
2 The structure of Sortase and the mechanism of the transpeptidation reaction catalyzed by Sortase
3 Sortases as tools for protein ligations and modifications
3.1 Validation of the in vitro Sortase activity
3.2 Seek for the mutants of Sortase
3.3 Immobilization of Sortase
4 Application of Sortase to protein ligations and modifications
4.1 C terminal modifications
4.2 N terminal modifications
4.3 C and N terminal modifications
4.4 Preparation of unnatural N-N/C-C chimeric proteins by using Sortase
4.5 Protein immobilization
4.6 Preparation of cyclopeptides
4.7 Sortase-tag expressed protein ligation reaction
4.8 Other applications
5 Conclusion and outlook

中图分类号: 

()

[1] Hackenberger C P R, Schwarzer D. Angew. Chem. Int. Ed., 2008, 47: 10030.
[2] a) Merrifield R B. Angew. Chem. Int. Ed., 1985, 24: 799; b) Hermkens P H H, Ottenheijm H C J, Rees D. Tetrahedron, 1996, 52: 4527.
[3] a) Bodanszky M. Principles of Peptide Synthesis. Berlin: Springer, 1984; b) Seewald N, Jakubke H D. Peptides: Chemistry and Biology. Weinheim: Wiley-VCH, 2002: 311.
[4] Dawson P E, Muir T W, Clark-Lewis I, Kent S B. Science, 266: 776.
[5] Kent S B. Chem. Soc. Rev., 2009, 38: 338.
[6] a) Mende F, Seitz O. Angew. Chem. Int. Ed., 2011, 123: 1266; b) Mende F, Seitz O. Angew. Chem. Int. Ed., 2011, 50: 1232.
[7] a) Canne L E, Ferre-D'Amare A R, Burley S K, Kent S B H. J. Am. Chem. Soc., 1995, 117: 2998; b) Liu C F, Rao C, Tam J P. J. Am. Chem. Soc., 1996, 118: 307; c) Nilsson B L, Kiessling L L, Raines R T. Org. Lett., 2000, 2: 1939; d) Bode J W, Fox R M, Baucom K D. Angew. Chem. Int. Ed., 2006, 118: 1270; e) Hackenberger C P R, Schwarzer D. Angew. Chem. Int. Ed., 2008, 120: 10182; f) Zheng J S, Chang H N, Wang F L, Liu L. J. Am. Chem. Soc., 2011, 133: 11080.
[8] a) Fang G M, Li Y M, Shen F, Huang Y C, Li J B, Lin Y, Cui H K, Liu L. Angew. Chem. Int. Ed., 2011, 50: 7645; b) Fang G M, Wang J X, Liu L. Angew. Chem. Int. Ed., 2002, 51: 10347; c) Zheng J S, Tang S, Huang Y C, Liu L. Acc. Chem. Res., 2013, 46: 2475; d) Zheng J S, Tang S, Guo Y, Chang H N, Liu L. ChemBioChem, 2012, 13: 542; e) Chen Y Q, Chen C C, He Y, Yu M, Xu L, Tian C L, Guo Q X, Shi J, Zhang M, Li Y M. Tetrahedron Lett., 2014, 55: 2883; f) Zheng J S, Yu M, Qi Y K, Tang S, Shen F, Wang Z P, Xiao L, Zhang L, Tian C L, Liu L. J. Am. Chem. Soc., 2014, 136: 3695; g) Zheng J S, Tang S, Qi Y K, Wang Z P, Liu L. Nat. Protoc., 2013, 8: 2483; h) Huang Y C, Chen C C, Li S J, Gao S, Shi J, Li Y M. Tetrahedron, 2014, 70: 2951; i) Huang Y C, Li Y M, Chen Y, Pan M, Li Y T, Yu L, Guo Q X, Liu L. Angew. Chem. Int. Ed., 2013, 52: 4858; j) Zheng J S, Chang H N, Shi J, Liu L. Sci. China. Chem., 2012, 55: 65; k) Pan M, He Y, Wen M, Wu F M, Sun D M, Li S J, Zhang L H, Li Y M, Tian C L. Chem. Commun., 2014, 50: 5837.
[9] Miquel V P, Muir T W. Cell, 2010, 143: 191.
[10] Muir T W, Sondhi D, Cole P A. Proc. Natl. Acad. Sci. U.S.A., 1998, 95: 6705.
[11] Evans T C, Benner J, Xu M Q. Protein Sci., 1998, 7: 2256.
[12] Giriat I, Muir T W. J. Am. Chem. Soc., 2003, 125: 7180.
[13] Pritz S. Mini-Reviews in Organic Chemistry, 2008, 5: 47.
[14] a) Wang L, Xie J M, Schultz P G. Annu. Rev. Biophys. Biomol. Struct., 2006, 35: 249; b) Liu C C, Schultz P G. Annu. Rev. Biochem., 2010, 79: 413; c) Davis L, Chin J W. Nat. Rev. Mol. Cell Biol., 2012, 13: 168; d)Wang L, Brock A, Herberich B, Schultz P G. Science, 2001, 292: 498.
[15] a) Li Y M, Yang M Y, Huang Y C, Li Y T, Chen P R, Liu L. ACS Chem. Biol., 2012, 7: 1015; b)Li Y M, Pan M, Li Y T, Huang Y C, Guo Q X. Org. Biomol. Chem., 2013, 11: 2624; c)Li Y M, Yang M Y, Huang Y C, Song X D, Liu L, Chen P R. Chem. Sci., 2012, 3: 2766.
[16] a) Saxon E, Armstrong J I, Bertozzi C R. Org. Lett., 2000, 2: 2141; b) Nilsson B L, Hondal R J, Soellner M B, Raines R T J. Am. Chem. Soc., 2003, 125: 5268.
[17] Merkx R, Rijkers D T S, Kemmink J, Liskamp R M J. Tetrahedron Lett., 2003, 44: 4515.
[18] KolbH C, FinnM G, SharplessK B. Angew. Chem. Int. Ed., 2001, 40: 2004.
[19] Wu P, Fokin V V. Aldrichimica Acta, 2007, 40: 7.
[20] Becer C R, Hoogenboom R, Schubert U S. Angew. Chem. Int. Ed., 2009, 48: 4900.
[21] a) Rideout D. Science, 1986, 233: 561; b) Mahal L K, Yarema K J, Bertozzi C R. Science, 1997, 276: 1125; c) Brustad E M, Lemke E A, Schultz P G, Deniz A A. J. Am. Chem. Soc., 2008, 130: 17664; d) Tsao M L, Tian F,Schultz P G. ChemBioChem, 2005, 6: 2147; e) Kiick K L, Saxon E, Tirrell D A, Bertozzi C R. Proc. Natl. Acad. Sci. U.S.A., 2002, 99: 19.
[22] a) Agard N J, Prescher J A, Bertozzi C R. J. Am. Chem. Soc., 2004, 126: 15046; b) Baskin J M. Proc. Natl. Acad. Sci. U.S.A., 2007, 104: 16793; c) Ning X, Guo J, Wolfert M A, Boons G J. Angew. Chem. Int. Ed., 2008, 47: 2253; d)Plass T, Milles S, Koehler C, Schultz C, Lemke E A. Angew. Chem. Int. Ed., 2011, 50: 3878.
[23] a) Liang G, Ren H, Rao J. Nat. Chem., 2010, 2: 54; b) Nguyen D P, Elliott T, Holt M, Muir T W, Chin J. J. Am. Chem. Soc., 2011, 133: 11418.
[24] a) Ning X, Temming R P, Dommerholt J, Guo J, Ania D B, Debets M F, Wolfert M A, Boons G, Delft F L. Angew. Chem. Int. Ed., 2010, 49: 3065; b) McKay C S, Blake J A, Cheng J, Danielson D C, Pezacki J P. Chem. Commun., 2011, 47: 10040.
[25] a) Song W, Wang Y, Qu J, Lin Q. J. Am. Chem. Soc., 2008, 130: 9654; b) Song W, Yang Y, Qu J, Madden M M, Lin Q. Angew. Chem. Int. Ed., 2008, 47: 2832; c) Gruber B, Balk S, Stadlbauer S, Konig B. Angew. Chem. Int. Ed., 2012, 51: 10060.
[26] a) Wang Q, Chan T R, Hilgraf R, Fokin V V, Sharpless K B, Finn M G. J. Am. Chem. Soc., 2003, 125: 3192; b) Nguyen D P, Lusic H, Neumann H, Kapadnis P B, Deiters A, Chin J W. J. Am. Chem. Soc., 2009, 131: 8720; c) Presolski S I, Hong V, Cho S, Finn M G. J. Am. Chem. Soc., 2010, 132: 14570.
[27] a) Blackman M L, Royzen M, Fox J M. J. Am. Chem. Soc., 2008, 130: 13518; b) Devaraj N K, Weissleder R, Hilderbrand S A. Bioconjugate Chem., 2008, 19: 2297; c) Plass T, Milles S, Koehler C, Szymanski J, Mueller R, Wiebler M, Schultz C, Lemke E A. Angew. Chem. Int. Ed., 2012, 51: 4166; d) Lang K, Davis L, Wallace S, Mahesh M, Cox D J, Blackman M L, Fox J M, Chin J W. J. Am. Chem. Soc., 2012, 134: 10317; e) Yang J, Seckute J, Cole C M, Devaraj N K. Angew. Chem. Int. Ed., 2012, 51: 7476; f) Seitchik J L, Peeler J C, Taylor M T, Blackman M L, Rhoads T W, Cooley R B, Refakis C, Fox J M, Mehl R A. J. Am. Chem. Soc., 2012, 134: 2898.
[28] Popp M W, Ploegh H L. Angew. Chem. Int. Ed., 2011, 50: 5024.
[29] Ilangovan U, Ton-That H, Iwahara J, Schneewind O, Clubb R T. Proc. Natl. Acad. Sci. U.S.A., 2001, 98: 6056.
[30] Paterson G K, Mitchell T J. Trends Microbiol., 2004, 12: 89.
[31] Ton-That H, Liu G, Mazmanian K S, Faull K F, Schneewind O. Proc. Natl. Acad. Sci. U.S.A., 1999, 96: 12424.
[32] Frankel B A, Kruger R G, Robinson D E, Kelleher N L, McCafferty D G. Biochemistry, 2005, 44: 11188.
[33] Guimaraes C P, Witte M D, Theile C S, Bozkurt G, Kundrat L, Blom A E M, Ploegh H L. Nat. Protoc., 2013, 8: 1787.
[34] Mazmanian S K, Ton-That H, Su K, Schneewind O. Proc. Natl. Acad. Sci. U.S.A., 2002, 99, 2293.
[35] Kharat A S, Tomasz A. Infect. Immun., 2003, 71: 2758.
[36] Tettelin H, Nelson K E, Paulsen L T, Eisen J A, Read T D, Peterson S, Heidelberg J, DeBoy R T, Haft D H, Dodson R J, Durkin A S, Gwinn M, Kolonay J F, Nelson W C, Peterson J D, Umayam L A, White O, Salzberg S L, Lewis M R, Radune D, Holtzapple E, Khouri H, Wolf A M, Utterback T R, Hansen C L, McDonald L A, Feldblyum T V, Angiuoli A, Dickinson T, Hickey E K, Holt I E, Loftus B J, Yang F, Smith H O, Venter J C, Dougherty B A, Morrison D A, Hollingshead S K, Fraser C M. Science, 2001, 293: 498.
[37] Pallen M J, Lam A C, Antonio M, Dunbar K. Trends Microbiol., 2001, 9: 97.
[38] Barnett T C, Scott J R. J. Bacteriol., 2002, 184: 2181.
[39] Mao H Y, Hart S A, Schink A, Pollok B A. J. Am. Chem. Soc., 2004, 126: 2670.
[40] Popp M W, Antos J M, Grotenbreg G M, Spooner E, Ploegh H L. Nat. Chem. Biol., 2007, 3: 707.
[41] Piotukh K, Geltinger B, Heinrich N, Gerth F, Beyermann M, Freund C, Schwarzer D. J. Am. Chem. Soc., 2011, 133: 17536.
[42] Steinhagen M, Zunker K, Nordsieck K, Beck-Sickinger A G. Bioorg. Med. Chem., 2013, 21: 3504.
[43] Antos J M, Miller G M, Grotenbreg G M, Ploegh H L. J. Am. Chem. Soc., 2008, 130: 16338.
[44] Popp M W, Antos J M, Ploegh H L. Curr. Protoc. Protein Sci., 2009, Chap. 15, Unit 153.
[45] Ling J J, Policarpo R L, Rabideau A E, Liao X, Pentelute B L. J. Am. Chem. Soc., 2012, 134: 10749.
[46] Theile C S, Witte M D, Blom A E M, Kundrat L, Ploegh H L, Guimaraes C P. Nat. Protoc., 2013, 8: 1808.
[47] Li Y M, Li Y T, Pan M, Kong X Q, Huang Y C, Hong Z Y, Liu L. Angew. Chem. Int. Ed., 2014, 53: 2198.
[48] Williamson D J, Fascione M A, Webb M E, Turnbull W B. Angew. Chem. Int. Ed., 2012, 51: 9377.
[49] Race P R, Bentley M L, Melvin J A, Crow A, Hughes R K, Smith W D, Sessions R B, Kehoe M A, McCafferty D G, Banfield M J. J. Biol. Chem., 2009, 284: 6924.
[50] Antos J M, Chew G L, Guimaraes C P, Yoder N C, Grotenberg G M, Ploegh M W. J. Am. Chem. Soc., 2009, 131: 10800.
[51] Wittea M D, Cragnolinia J J, Dougana S K, Yodera N C, Popp M W, Ploegh H L. Proc. Natl. Acad. Sci. U.S.A., 2012, 109, 11993.
[52] Witte M D, Theile C S, Wu T, Guimaraes C P, Blom A E M, Ploegh H L. Nat. Protoc., 2013, 8: 1808.
[53] Parthasarathy R, Subramanian S, Boder E T. Bioconjugate Chem., 2007, 18: 469.
[54] Popp M W, Dougana S K, Chuanga T Y, Spoonera E, Ploegh H L. Proc. Natl. Acad. Sci. U.S.A., 2011, 108: 3169.
[55] Warden-Rothman R, Caturegli I, Popik V, Tsourkas A. Anal. Chem., 2013, 85: 11090.
[56] Swee L K, Guimaraes C P, Sehrawat S, Spooner E, Barrasa M I, Ploegh H L. Proc. Natl. Acad. Sci. U.S.A., 2013, 110: 1428.
[57] Teschke T, Geltinger B, Dose A, Freund C, Schwarzer D. ACS Chem. Biol., 2013, 8: 1692.

[1] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[2] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[3] 张沐雅, 刘嘉琪, 陈旺, 王利强, 陈杰, 梁毅. 蛋白质凝聚作用在神经退行性疾病中的作用机制研究[J]. 化学进展, 2022, 34(7): 1619-1625.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 张双玉, 胡韵璇, 李成, 徐新华. 微生物铁氧化还原作用对水中砷锑去除影响的研究进展[J]. 化学进展, 2022, 34(4): 870-883.
[6] 马佳慧, 袁伟, 刘思敏, 赵智勇. 小分子共价DNA的组装及生物医学应用[J]. 化学进展, 2022, 34(4): 837-845.
[7] 王琼, 肖康. 中国城市住宅室内甲醛浓度及影响因素[J]. 化学进展, 2022, 34(3): 743-772.
[8] 管可可, 雷文, 童钊明, 刘海鹏, 张海军. MXenes的制备、结构调控及电化学储能应用[J]. 化学进展, 2022, 34(3): 665-682.
[9] 薛朝鲁门, 刘宛茹, 白图雅, 韩明梅, 莎仁, 詹传郎. 非富勒烯受体DA'D型稠环单元的结构修饰及电池性能研究[J]. 化学进展, 2022, 34(2): 447-459.
[10] 林刚, 张媛媛, 刘健. 仿生光(电)催化NADH再生[J]. 化学进展, 2022, 34(11): 2351-2360.
[11] 郑明心, 谭臻至, 袁金颖. 光响应Janus粒子体系的构建与应用[J]. 化学进展, 2022, 34(11): 2476-2488.
[12] 朱本占, 张静, 唐苗, 黄春华, 邵杰. 致癌性卤代醌类消毒副产物造成 DNA 损伤的分子机理研究[J]. 化学进展, 2022, 34(1): 227-236.
[13] 曾滴, 刘雪晨, 周沅逸, 王海鹏, 张玲, 王文中. 催化转化呋喃类生物质制备芳香烃化合物的研究[J]. 化学进展, 2022, 34(1): 131-141.
[14] 张元霞, 鲍艳, 马建中. 两亲性Janus粒子的合成及其在Pickering乳液中的应用[J]. 化学进展, 2021, 33(2): 254-262.
[15] 邹丹青, 王琮, 肖斐, 魏宇琛, 耿林, 王磊. Janus 粒子在环境检测领域中的应用[J]. 化学进展, 2021, 33(11): 2056-2068.