English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1317-1328 DOI: 10.7536/PC140341 前一篇   后一篇

• 综述与评论 •

主客体超分子囊泡及其药物载运性能研究

马明放, 邢鹏遥, 李尚洋, 初晓晓, 王波, 郝爱友*   

  1. 山东大学化学与化工学院 济南 250100
  • 收稿日期:2014-03-01 修回日期:2014-05-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 郝爱友 E-mail:haoay@sdu.edu.cn

Advances of Host-Guest Supramolecular Vesicles and Their Properties in Drug Delivery

Ma Mingfang, Xing Pengyao, Li Shangyang, Chu Xiaoxiao, Wang Bo, Hao Aiyou*   

  1. School of Chemistry and Chemical Engineering, Shandong University, Jinan 250100, China
  • Received:2014-03-01 Revised:2014-05-01 Online:2014-08-15 Published:2014-06-10

伴随着新型主体分子的不断出现,主客体超分子囊泡的研究受到越来越多的关注。环糊精、杯芳烃、葫芦脲和柱芳烃等主体分子均可以和特定结构的客体分子通过主客体识别作用构筑超分子双亲分子,得到的超分子双亲分子可以进一步自组装为主客体超分子囊泡。主客体超分子囊泡是一类具有敏感响应性的囊泡体系,具有制备简单、生物相容性好和易于控制组装等优点。该囊泡体系对外界刺激具有良好的响应性,从而可以实现药物分子的可控运输和释放,使其成为一种性能独特的药物载运系统。本文结合近年来主体分子的发展,首先介绍了环糊精、杯芳烃、葫芦脲和柱芳烃等主客体超分子囊泡的研究进展,然后对该类超分子囊泡的载药途径进行了总结。该囊泡体系不仅可以在囊泡膜层和空腔中载药,还可以在主体分子的空腔中载药。同时,对载药主客体超分子囊泡的不同刺激响应性进行了归纳概括。最后结合该体系现阶段的研究状况,对该类超分子囊泡的发展前景进行了展望。

The host-guest supramolecular vesicles are attracting more and more attention with the emergence of new host molecules. Cyclodextrin, calixarene, cucurbituril and pillararene can all form supramolecular amphiphiles with specific guest molecules based on host guest recognition, the obtained supramolecular amphiphiles can further self-assembled into the host-guest supramolecular vesicles under mild condition. The host-guest supramolecular vesicles is a sensitively responsive vesicular system, which possesses the advantages of simple preparation, good biocompatibility and controllable self-assembly. This vesicular system has good responsiveness to external stimuli, which can realize drug molecules controllable delivery and release, making it a unique drug delivery system. According to the development of the host molecules recently, the advances of cyclodextrin, calixarene, cucurbituril and pillararene host-guest supramolecular vesicles are introduced firstly. Then the drug delivery ways of this supramolecular vesicles system are summarized, drug molecules can not only be loaded in the cavities and membranes of the host-guest supramolecular vesicles, but also can be loaded in the cavities of the host molecules. Meanwhile, the stimuli (such as pH, ions, redox potential, enzyme, temperature and competitive guests) responsiveness of this drug loaded host-guest supramolecular vesicles is summed up. Finally, the prospects are pointed out based on the current development of this system.

Contents
1 Introduction
2 Different host-guest supramolecular vesicles
2.1 Host-guest supramolecular vesicles of cyclodextrin
2.2 Host-guest supramolecular vesicles of calixarene
2.3 Host-guest supramolecular vesicles of cucurbituril
2.4 Host-guest supramolecular vesicles of pillararene
3 Drug delivery ways of the host-guest supramolecular vesicles
3.1 Drugs loaded in the cavities of the host-guest supramolecular vesicles
3.2 Drugs loaded in the membranes of the host-guest supramolecular vesicles
4 Different stimuli responsiveness of the drug loaded host-guest supramolecular vesicles
4.1 pH response
4.2 Ion response
4.3 Redox response
4.4 Enzyme response
4.5 Temperature response
4.6 Competitive guests response
5 Summary and prospects

中图分类号: 

()

[1] Voskuhl J, Ravoo B J. Chem. Soc. Rev., 2009, 38: 495.
[2] 张华承(Zhang H C), 郝爱友(Hao A Y), 李干佐(Li G Z), 孙宏元(Sun H Y). 有机化学(Chinese Journal of Organic Chemistry), 2009, 29(2): 166.
[3] 辛飞飞(Xin F F), 张华承(Zhang H C), 孙涛(Sun T), 孔丽(Kong L), 李月明(Li Y M), 郝爱友(Hao A Y). 化学进展(Progress in Chemistry), 2012, 24(2/3): 414.
[4] Stano P, D'Aguanno E, Bolz J, Fahr A, Luisi P L. Angew. Chem. Int. Ed., 2013, 52: 13397.
[5] Kumar M, Habel J, Shen Y X, Meier W P, Walz T. J. Am. Chem. Soc., 2012, 134: 18631.
[6] Wang L, Chierico L, Little D, Patikarnmonthon N, Yang Z, Azzouz M, Madsen J, Armes S P, Battaglia G. Angew. Chem. Int. Ed., 2012, 51: 11122.
[7] Chen K J, Liang H F, Chen H L, Wang Y, Cheng P Y, Liu H L, Xia Y, Sung H W. ACS Nano, 2013, 7: 438.
[8] Spulber M, Najer A, Winkelbach K, Glaied O, Waser M, Pieles U, Meier W, Bruns N. J. Am. Chem. Soc., 2013, 135: 9204.
[9] Zhang S Y, Zhao Y. ACS Nano, 2011, 5: 2637.
[10] Wang M F, Mohebbi A R, Sun Y M, Wudl F. Angew. Chem. Int. Ed., 2012, 51: 6920.
[11] Wang Y P, Han P, Xu H P, Wang Z Q, Zhang X, Kabanov A V. Langmuir, 2010, 26: 709.
[12] Wang C, Yin S C, Chen S L, Xu H P, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2008, 47: 9049.
[13] Tao W, Liu Y, Jiang B B, Yu S R, Huang W, Zhou Y F, Yan D Y. J. Am. Chem.Soc., 2012, 134: 762.
[14] Iyer A K, Khaled G, Fang J, Maeda H. Drug Discov. Today, 2006, 11: 812.
[15] Panyam J, Labhasetwar V. Adv. Drug Deliv. Rev., 2012, 64: 61.
[16] Yao Y, Xue M, Chen J Z, Zhang M M, Huang F H. J. Am. Chem. Soc., 2012, 134: 15712.
[17] Yu G C, Ma Y J, Han C Y, Yao Y, Tang G P, Mao Z W, Gao C Y, Huang F H. J. Am. Chem. Soc., 2013, 135: 10310.
[18] Wang Y X, Guo D S, Cao Y, Liu Y. RSC Adv., 2013, 3: 8058.
[19] Yang Y, Zhang Y M, Chen Y, Chen J T, Liu Y. J. Med. Chem., 2013, 56: 9725.
[20] 童林荟(Tong L H). 环糊精化学——基础与应用(Cyclodextrin Chemistry——Foundation and Application). 北京: 科学出版社(Beijing: Science Press), 2001. 10.
[21] Szejtli J. Chem. Rev., 2005, 98: 1743.
[22] Jing B, Chen X, Wang X D, Yang C J, Xie Y Z, Qiu H Y. Chem. Eur. J., 2007, 13: 9137.
[23] Wang Y P, Ma N, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2007, 46: 2823.
[24] Zhang H C, Shen J, Liu Z N, Hao A Y, Bai Y, An W. Supramol. Chem., 2010, 22: 297.
[25] Sun L Z, Zhang H C, An W, Hao A Y, Hao J C. J. Incl. Phenom. Macrocycl. Chem., 2010, 68: 277.
[26] Zhang H C, Sun L Z, Liu Z N, An W, Hao A Y, Xin F F, Shen J. Colloids Surf. A, 2010, 358: 115.
[27] Zhang H C, An W, Liu Z N, Hao A Y, Hao J C, Shen J, Zhao X H, Sun H Y, Sun L Z. Carbohydra. Res., 2010, 345: 87.
[28] Zhang H C, Li Y Y, Sun H Y, Xin F F, Liu Z N, Hao A Y, Li J Y, Shen J, Xu S G, An W, Sun L Z, Sun T, Zhao W J, Li Y M, Kong L. J. Disper. Sci. Technol., 2011, 32: 834.
[29] Sun T, Li Y M, Zhang H C, Li J Y, Xin F F, Kong L, Hao A Y. Colloids Surf. A, 2011, 375: 87.
[30] Xin F F, Zhang H C, An W, Sun L Z, Hao A Y, Li Y M. J. Disper. Sci. Technol., 2012, 3: 1.
[31] Li S Y, Sun T, Yang X Z, Wang B, Xing P Y, Hou X H, Su J, Hao A Y. Colloid and Polym. Sci., 2013, 291: 2639.
[32] Li S Y, Xing P Y, Hou Y H, Yang J S, Yang X Z, Wang B, Hao A Y. J. Mol. Liq., 2013, 188: 74.
[33] An W, Zhang H C, Sun L Z, Hao A Y, Hao J C, Xin F F. Carbohydra. Res., 2010, 345: 914.
[34] Sun T, Guo Q, Zhang C, Hao J C, Xing P Y, Li S Y, Hao A Y, Liu G C. Langmuir, 2012, 28: 8625.
[35] Zhang H C, Shen J, Liu Z N, Bai Y, An W, Hao A Y. Carbohydra. Res., 2009, 344: 2028.
[36] Zhang H C, Xin F F, An W, Hao A Y, Wang X, Zhao X H, Liu Z N, Sun L Z. Colloids Surf. A, 2010, 363: 78.
[37] Sun T, Zhang H C, Yan H, Li J Y, Cheng G H, Hao A Y, Qiao H W, Xin F F. Supramol. Chem., 2011, 23: 351.
[38] Sun T, Zhang H C, Kong L, Qiao H W, Li Y M, Xin F F, Hao A Y. Carbohydra. Res., 2011, 346: 285.
[39] Sun T, Shen J, Yan H, Hao J C, Hao A Y. Colloids Surf. A, 2012, 414: 41.
[40] de Namor A F D, Cleverley R M, Zapata-Ormachea M L. Chem. Rev., 1998, 98: 2495.
[41] Guo D S, Liu Y. Chem. Soc. Rev., 2012, 41: 5907.
[42] Wang K, Guo D S, Wang X, Liu Y. ACS Nano, 2011, 5: 2880.
[43] Wang K, Guo D S, Liu Y. Chem. Eur. J., 2012, 18: 8758.
[44] Lee J W, Samal S, Selvapalam N, Kim H J, Kim K. Acc. Chem. Res., 2003, 36: 621.
[45] Day A I, Arnold A P, Blanch R J. WO2000-2000AU4122 0000505, 2000.
[46] Kim J, Jung I S, Kim S Y, Lee E, Kang J K, Sakamoto S, Yamaguchi K, Kim K. J. Am. Chem. Soc., 2000, 122: 540.
[47] Jeon Y J, Bharadwaj P K, Choi S W, Lee J W, Kim K. Angew. Chem., 2002, 114: 4654.
[48] Ogoshi T, Kanai S, Fujinami S, Yamagishi T, Nakamoto Y. J. Am. Chem. Soc., 2008, 130: 5022.
[49] Ogoshi T, Yamagishi T. Eur. J. Org. Chem., 2013, 15: 2961.
[50] 王凯(Wang K), 杨英威(Yang Y W), 张晓安(Zhang X A). 高等学校化学学报(Chemical Journal of Chinese Universities), 2012, 33(1): 1.
[51] Yang Y W, Sun Y L, Song N. Acc. Chem. Res., 2014, 47:1950.
[52] Li H, Chen D X, Sun Y L, Zheng Y B, Tan L L, Weiss P S, Yang Y W. J. Am. Chem. Soc., 2013, 135: 1570.
[53] Hou X S, Ke C F, Cheng C Y, Song N, Blackburn A K, Sarjeant A A, Botros Y Y, Yang Y W, Stoddart J F. Chem. Commun., 2014, 50: 6196.
[54] Wang K, Wang C Y, Wang Y, Li H, Bao C Y, Liu J Y, Zhang S X A, Yang Y W. Chem. Commun., 2013, 49: 10528.
[55] Zhou Y, Tan L L, Li Q L, Qiu X L, Qi A D, Tao Y C, Yang Y Y. Chem. Eur. J., 2014, 20: 2998.
[56] Yu G C, Han C Y, Zhang Z B, Chen J Z, Yan X Z, Zheng B, Liu S Y, Huang F H. J. Am. Chem. Soc., 2012, 134: 8711.
[57] Yu G C, Xue M, Zhang Z B, Li J Y, Han C Y, Huang F H. J. Am. Chem. Soc., 2012, 134: 13248.
[58] Yu G C, Zhou X Y, Zhang Z B, Han C Y, Mao Z W, Guo C Y, Huang F H. J. Am. Chem. Soc., 2012, 134: 19489.
[59] Liu G Y, Jin Q, Liu X S, Lv L P, Chen C J, Ji J. Soft Matter, 2011, 7: 662.
[60] Zhang H C, Ma X, Nguyen K T, Zhao Y L. ACS Nano, 2013, 7: 7853.
[61] Zhang H C, Liu Z N, Xin F F, An W, Hao A Y, Li J Y, Li Y Y, Sun L Z, Sun T, Zhao W J, Li Y M, Kong L. Carbohydra. Res., 2011, 346: 294.
[62] Sun T, Yan H, Liu G C, Hao J C, Su J, Li S Y, Xing P Y, Hao A Y. J. Phys. Chem. B, 2012, 116: 14628.
[63] Sun T, Ma M F, Yan H, Shen J, Su J, Hao A Y. Colloids Surf. A, 2013, 424: 105.
[64] Yang X Q, Grailer J J, Rowland I J, Javadi A, Hurley S A, Matson V Z, Steeber D A, Gong S Q. ACS Nano, 2010, 4: 6805.
[65] Duan Q P, Cao Y, Li Y, Hu X Y, Xiao T X, Lin C, Pan Y, Wang L Y. J. Am. Chem. Soc., 2013, 135: 10542.
[66] Ma M F, Guan Y, Zhang C, Hao J C, Xing P Y, Su J, Li S Y, Chu X X, Hao A Y. Colloids Surf. A, 2014, 454: 38.
[67] Yan Q, Yuan J Y, Cai Z N, Xin Y, Kang Y, Yin Y W. J. Am. Chem. Soc., 2012, 132: 9268.
[68] Guo D S, Wang K, Wang Y X, Liu Y. J. Am. Chem. Soc., 2012, 134: 10244.
[69] Wang K, Guo D S, Zhao M Y, Liu Y. Chem. Eur. J., 2014, 20: 1.
[70] Wang K, Guo D S, Liu Y. Chem. Eur. J., 2010, 16: 8006.
[71] Jiao D Z, Geng J, Loh X J, Das D, Lee T C, Scherman O A. Angew. Chem. Int. Ed., 2012, 51: 9633.

[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 李姝慧, 李倩倩, 李振. 从单分子到分子聚集态科学[J]. 化学进展, 2022, 34(7): 1554-1575.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 仲宣树, 刘宗建, 耿雪, 叶霖, 冯增国, 席家宁. 材料表面性质调控细胞黏附[J]. 化学进展, 2022, 34(5): 1153-1165.
[5] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[6] 王萌, 宋贺, 祝伊飞. 智能响应蓝相液晶光子晶体[J]. 化学进展, 2022, 34(12): 2588-2603.
[7] 李庚, 李洁, 姜泓宇, 梁效中, 郭鹍鹏. 力刺激响应发光聚合物[J]. 化学进展, 2022, 34(10): 2222-2238.
[8] 陈永杭, 李欣芳, 余伟江, 王幽香. 刺激响应聚合物微针在经皮给药中的应用[J]. 化学进展, 2021, 33(7): 1152-1158.
[9] 荆晓东, 孙莹, 于冰, 申有青, 胡浩, 丛海林. 肿瘤微环境响应药物递送系统的设计[J]. 化学进展, 2021, 33(6): 926-941.
[10] 穆蒙, 宁学文, 罗新杰, 冯玉军. 刺激响应性聚合物微球的制备、性能及应用[J]. 化学进展, 2020, 32(7): 882-894.
[11] 吴晴, 唐一源, 余淼, 张悦莹, 李杏梅. 基于肿瘤微环境响应的DNA纳米结构递药系统[J]. 化学进展, 2020, 32(7): 927-934.
[12] 马明放, 栾天翔, 邢鹏遥, 李兆楼, 初晓晓, 郝爱友. 基于β-环糊精的有机小分子凝胶[J]. 化学进展, 2019, 31(2/3): 225-235.
[13] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[14] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[15] 袁静, 廖芳芳, 郭雅妮, 梁丽芸. 超亲水超疏油油水分离膜的制备及其性能[J]. 化学进展, 2019, 31(1): 144-155.