English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1409-1426 DOI: 10.7536/PC140331 前一篇   后一篇

• 综述与评论 •

准聚轮烷的研究进展

孙书1,2, 石建兵1, 董宇平1, 胡晓玉*2, 王乐勇*2   

  1. 1. 北京理工大学材料学院 北京 100081;
    2. 南京大学化学化工学院 超分子化学与智能材料实验室 南京 210093
  • 收稿日期:2014-03-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 胡晓玉, 王乐勇 E-mail:huxy@nju.edu.cn;lywang@nju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21202083)资助

Research Advances of Polypseudorotaxanes

Sun Shu1,2, Shi Jianbing1, Dong Yuping1, Hu Xiaoyu*2, Wang Leyong*2   

  1. 1. School of Materials Science and Engineering, Beijing Institute of Technology, Beijing 100081, China;
    2. Lab for Supramolecular Chemistry and Dynamic Materials, School of Chemistry and Chemical Engineering, Nanjing University, Nanjing 210093, China
  • Received:2014-03-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21202083)

准聚轮烷由于在刺激响应性材料、自修复材料、分子机器及荧光传感器等领域有着潜在的应用价值,近年来引起了研究人员极大的兴趣。根据准轮烷基团所处位置的不同,可将准聚轮烷分为三种类型:主链型、侧链型和其他类型 (如支化和网状准聚轮烷等)。本综述主要根据上述三种类型,基于冠醚、环糊精、杯芳烃、葫芦脲和柱芳烃这五种超分子主体分子所构筑的准聚轮烷的最新研究进展进行简要的综述,并对其未来的发展作了进一步的展望。

Polypseudorotaxanes have attracted great interest in the past twenty years, due to their potential applications in the fabrication of stimuli-responsive materials, self-healing materials, molecular machines and fluorescent sensors. Depending on the location of the pseudorotaxane unit, polypseudorotaxanes can be mainly divided into three types: main-chain polypseudorotaxanes, side-chain polypseudorotaxanes, and others (such as branched and crosslinked polypseudorotaxanes). In this review, the recent advances of these three types of polypseudorotaxanes constructed by supramolecular macrocycles, such as crown ether, cyclodextrin, calixarene, cucurbituril, and pillararene are reviewed, and their future developments are also briefly prospected.

Contents
1 Introduction
2 Crown ether based polypseudorotaxanes
2.1 Crown ether based main-chain polypseudorotaxanes
2.2 Crown ether based side-chain polypseudorotaxanes
2.3 Crown ether based crosslinked polypseudorotaxanes
3 Cyclodextrin-based polypseudorotaxanes
3.1 Cyclodextrin-based main-chain polypseudorotaxanes
3.2 Cyclodextrin-based side-chain polypseudorotaxanes
3.3 Other types of cyclodextrin-based polypseudorotaxanes
4 Calixarene-based polypseudorotaxanes
5 Cucurbituril-based polypseudorotaxanes
5.1 Cucurbituril-based main-chain polypseudorotaxanes
5.2 Cucurbituril-based side-chain polypseudorotaxanes
6 Pillararene-based polypseudorotaxanes
6.1 Pillararene-based main-chain polypseudorotaxanes
6.2 Pillararene-based side-chain polypseudorotaxanes
6.3 Pillararene-based crosslinked polypseudorotaxanes
7 Conclusion and outlook

中图分类号: 

()

[1] Lehn J M. Pure Appl. Chem., 1978, 50: 871.
[2] Lehn J M. Angew. Chem. Int. Ed., 1988, 27: 89.
[3] Gokel G W. Advances in Supramolecular Chemistry. Greenwich CT: JAI Press, 1992. 141.
[4] Tian H, Wang Q C. Chem. Soc. Rev., 2006, 35: 361.
[5] Ma X, Tian H. Chem. Soc. Rev., 2010, 39: 70.
[6] Fang L, Olson M A, Benítez D, Tkatchouk E, Goddard W A, Stoddart J F. Chem. Soc. Rev., 2010, 39: 17.
[7] Hernández J V, Kay E R, Leigh D A. Science, 2004, 306: 1532.
[8] Deng W Q, Flood A H, Stoddart J F, Goddard W A. J. Am. Chem. Soc., 2005, 127: 15994.
[9] Xiao T X, Li S L, Zhang Y J, Lin C, Hu B J, Guan X C, Yu Y H, Jiang J L, Wang L Y. Chem. Sci., 2012, 3: 1417.
[10] Champin B, Mobian P, Sauvage J P. Chem. Soc. Rev., 2007, 36: 358.
[11] Gan Q, Ferrand Y, Bao C Y, Kauffmann B, Grélard A, Jiang H, Huc I. Science, 2011, 331: 1172.
[12] Gan Q, Bao C, Kauffmann B, Grélard A, Xiang J, Liu S, Huc I, Jiang H. Angew. Chem. Int. Ed., 2008, 120: 1739.
[13] Haldar D, Jiang H, Léger J M, Huc I. Angew. Chem. Int. Ed., 2006, 118: 5609.
[14] Vögtle F, Dünnwald T, Schmidt T. Acc. Chem. Res., 1996, 29: 451.
[15] Nepogodiev S A, Stoddart J F. Chem. Rev., 1998, 98: 1959.
[16] Harada A. Acc. Chem. Res., 2001, 34: 456.
[17] Schalley C A, Beizai K, Vögtle F. Acc. Chem. Res., 2001, 34: 465.
[18] Collin J P, Dietrich-Buchecker C, Gavia P, Jimenez-Molero M C, Sauvage J P. Acc. Chem. Res., 2001, 34: 477.
[19] Wenz G, Han B H, Müller A. Chem. Rev., 2006, 106: 782.
[20] Gibson H W, Bheda M C, Engen P T. Prog. Polym. Sci., 1994, 19: 843.
[21] Harada A. Coord. Chem. Rev., 1996, 148: 115.
[22] Raymo F M, Stoddart J F. Chem. Rev., 1999, 99: 1643.
[23] Panova I G, Topchieva I N. Russ. Chem. Rev., 2001, 70: 23.
[24] Takata T, Kihara N, Furusho Y. Adv. Polym. Sci., 2004, 171: 1.
[25] Huang F H, Gibson H W. Prog. Polym. Sci., 2005, 30: 982.
[26] Ashton P R, Philp D, Reddington M V, Slawin A M Z, Spencer N, Stoddart J F, Williams D J. J. Chem. Soc. Chem. Commun., 1991, 1680.
[27] Ashton P R, Campbell P J, Chrystal E J T, Glink P T, Menzer S, Philp D, Spencer N, Stoddart J F, Tasker P A, Williams D J. Angew. Chem. Int. Ed., 1995, 34: 1865.
[28] Glink P T, Schiavo C, Stoddart J F, Williams D J. Chem. Commun., 1996, 1483.
[29] 罗勤慧(Luo Q H). 大环化学——主-客体化合物和超分子(Macrocyclic Chemistry——Host-Guest Compounds and Supramolecules). 北京: 科学出版社(Beijing: Science Press), 2009. 8.
[30] Kohsaka Y, Koyama Y, Takata T. Angew. Chem. Int. Ed., 2011, 50: 10417.
[31] Gong C G, Balanda P B, Gibson H W. Macromolecules, 1998, 31: 5278.
[32] Lee M, Moore R B, Gibson H W. Macromolecules, 2011, 44: 5987.
[33] Wang F, Zheng B, Zhu K L, Zhou Q Z, Zhai C X, Li S J, Li N, Huang F H. Chem. Commun., 2009, 4375.
[34] Wei P F, Li J Y, Yan X Z, Zhou Q Z. Org. Lett., 2013, 16: 126.
[35] Yamaguchi N, Gibson H W. Macromol. Chem. Phys., 2000, 201: 815.
[36] Leung K C F, Mendes P M, Magonov S N, Northrop B H, Kim S, Patel K, Flood A H, Tseng H R, Stoddart J F. J. Am. Chem. Soc., 2006, 128: 10707.
[37] Zhang M M, Xu D H, Yan X Z, Chen J Z, Dong S Y, Zheng B, Huang F H. Angew. Chem. Int. Ed., 2012, 51: 7011.
[38] Chen L, Tian Y K, Ding Y, Tian Y J, Wang F. Macromolecules, 2012, 45: 8412.
[39] Li S, Lu H Y, Shen Y, Chen C F. Macromol. Chem. Physic., 2013, 214: 1596.
[40] Zeng F, Han Y, Yan Z C, Liu C Y, Chen C F. Polymer, 2013, 54: 6929.
[41] Zeng F, Shen Y, Chen C F. Soft Matter, 2013, 9: 4875.
[42] Li S L, Xiao T X, Hu B J, Zhang Y J, Zhao F, Ji Y, Yu Y H, Lin C, Wang L Y. Chem. Commun., 2011, 47: 10755.
[43] Ji X F, Yao Y, Li J Y, Yan X Z, Huang F H. J. Am. Chem. Soc., 2012, 135: 74.
[44] Szejtli J. Chem. Rev., 1998, 98: 1743.
[45] 刘育(Liu Y), 尤长城(You C C), 张衡益(Zhang H Y). 超分子化学——合成受体的分子识别与组装(Supramolecular Chemistry——Molecular Recognition and Assembly of Synthetic Acceptors). 天津: 南开大学出版社(Tianjin: Nankai University Press), 2001. 168.
[46] Connors K A. Chem. Rev., 1997, 97: 1325.
[47] Wenz G, Han B H, Müller A. Chem. Rev., 2006, 106: 782.
[48] Harada A, Kamachi M. Macromolecules, 1990, 23: 2821.
[49] Harada A, Li J, Kamachi M. Nature, 1992, 356: 325.
[50] Harada A, Hashidzume A, Yamaguchi H, Takashima Y. Chem. Rev., 2009, 109: 5974.
[51] 董海清(Dong H Q), 李永勇(Li Y Y), 李兰(Li L), 时东陆(Shi D L). 化学进展(Progress in Chemistry), 2011, 23(5): 914.
[52] Li J, Harada A, Kamachi M. Polym. J., 1994, 26: 1019.
[53] Li X, Li J. J. Biomed. Mater. Res. A, 2008, 86A: 1055.
[54] Li J, Li X, Zhou Z H, Ni X P, Leong K W. Macromolecules, 2001, 34: 7236.
[55] Li J, Li X, Ni X P, Wang X, Li H Z, Leong K W. Biomaterials, 2006, 27: 4132.
[56] Ni X P, Cheng A, Li J. J. Biomed. Mater. Res. A, 2009, 88A: 1031.
[57] Choi H S, Ooya T, Lee S C, Sasaki S, Kurisawa M, Uyama H, Yui N. Macromolecules, 2004, 37: 6705.
[58] Lee S C, Choi H S, Ooya T, Yui N. Macromolecules, 2004, 37: 7464.
[59] Park C, Oh K, Lee S C, Kim C. Angew. Chem. Int. Ed., 2007, 46: 1455.
[60] Yang Y W, Chen Y, Liu Y. Inorg. Chem., 2006, 45: 3014.
[61] Shi J, Chen Y, Wang Q, Liu Y. Adv. Mater., 2010, 22: 2575.
[62] Nelson A, Belitsky J M, Vidal S, Joiner C S, Baum L G, Stoddart J F. J. Am. Chem. Soc., 2004, 126: 11914.
[63] Taura D, Li S J, Hashidzume A, Harada A. Macromolecules, 2010, 43: 1706.
[64] Ogoshi T, Masuda K, Yamagishi T A, Nakamoto Y. Macromolecules, 2009, 42: 8003.
[65] Ogoshi T, Takashima Y, Yamaguchi H, Harada A. Chem. Commun., 2006, 3702.
[66] Fu Q, Ren J M, Qiao G G. Polym. Chem., 2012, 3: 343.
[67] Zhao Y L, Stoddart J F. Langmuir, 2009, 25: 8442.
[68] Shinkai S. Tetrahedron, 1993, 49: 8933.
[69] Asfari Z, Böhmer V, Harrowfield J, Vicens J. Calixarenes. Netherlands: Kluwer Academic, 2001. 130.
[70] 刘育(Liu Y), 张衡益(Zhang H Y), 李莉(Li L), 王浩(Wang H). 纳米超分子化学——从合成受体到功能组装体(Nanoscale Supramolecular Chemistry——From Synthetic Receptors to Functional Assemblies). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2004. 90.
[71] Yamagishi T A, Kawahara A, Kita J, Hoshima M, Umehara A, Ishida S, Nakamoto Y. Macromolecules, 2001, 34: 6565.
[72] Capici C, Cohen Y, D'Urso A, Gattuso G, Notti A, Pappalardo A, Pappalardo S, Parisi M F, Purrello R, Slovak S, Villari V. Angew. Chem. Int. Ed., 2011, 50: 11956.
[73] Pappalardo A, Ballistreri F P, Destri G L, Mineo P G, Tomaselli G A, Toscano R M, Sfrazzetto G T. Macromolecules, 2012, 45: 7549.
[74] Freeman W A, Mock W L, Shih N Y. J. Am. Chem. Soc., 1981, 103: 7367.
[75] Krasia T C, Steinke J H G. Chem. Commun., 2002, 22.
[76] Tuncel D, Tiftik H B, Salih B. J. Mater. Chem., 2006, 16: 3291.
[77] Tuncel D, Steinke J H G. Chem. Commun., 2001, 253.
[78] Choi S W, Lee J W, Ko Y H, Kim K. Macromolecules, 2002, 35: 3526.
[79] Kim J, Ahn Y, Park K M, Lee D W, Kim K. Chem. Eur. J., 2010, 16: 12168.
[80] Liu Y, Shi J, Chen Y, Ke C F. Angew. Chem. Int. Ed., 2008, 47: 7293.
[81] Liu Y L, Yu Y, Gao J, Wang Z Q, Zhang X. Angew. Chem. Int. Ed., 2010, 49: 6576.
[82] Liu Y L, Yang H, Wang Z Q, Zhang X. Chem. Asian J., 2013, 8: 1626.
[83] Huang Z H, Yang L L, Liu Y L, Wang Z Q, Scherman O A, Zhang X. Angew. Chem. Int. Ed., 2014, DOI: 10.1002/ange. 201402817.
[84] Tan Y B, Choi S W, Lee J W, Ko Y H, Kim K. Macromolecules, 2002, 35: 7161.
[85] Choi S W, Ritter H. Macromol. Rapid. Comm., 2007, 28: 101.
[86] Yang H, Tan Y B, Hao J C, Yang H B, Liu F W. J. Polym. Sci. Part A: Polym. Chem., 2010, 48: 2135.
[87] Yang H, Hao J C, Tan Y B. J. Polym. Sci. Part A: Polym. Chem., 2011, 49: 2138.
[88] Liu Y, Ke C F, Zhang H Y, Wu W J, Shi J. J. Org. Chem., 2007, 72: 280.
[89] Ogoshi T, Kanai S, Fujinami S, Yamagishi T A, Nakamoto Y. J. Am. Chem. Soc., 2008, 130: 5022.
[90] Cao D R, Kou Y H, Liang J Q, Chen Z Z, Wang L Y, Meier H. Angew. Chem. Int. Ed., 2009, 48: 9721.
[91] Han C Y, Ma F Y, Zhang Z B, Xia B Y, Yu Y H, Huang F H. Org. Lett., 2010, 12: 4360.
[92] Tao H Q, Cao D R, Liu L Z, Kou Y H, Wang L Y, Meier H. Sci. China Chem., 2012, 55: 223.
[93] Hu X B, Chen Z X, Chen L, Zhang L, Hou J L, Li Z T. Chem. Commun., 2012, 48: 10999.
[94] Wang K, Tan L L, Chen D X, Song N, Xi G, Zhang S X A, Li C J, Yang Y W. Org. Biomol. Chem., 2012, 10: 9405.
[95] Zhang Z B, Xia B Y, Han C Y, Yu Y H, Huang F H. Org. Lett., 2010, 12: 3285.
[96] Ogoshi T, Nishida Y, Yamagishi T A, Nakamoto Y. Macromolecules, 2010, 43: 3145.
[97] Ogoshi T, Nishida Y, Yamagishi T A, Nakamoto Y. Macromolecules, 2010, 43: 7068.
[98] Ogoshi T, Hasegawa Y, Aoki T, Ishimori Y, Inagi S, Yamagishi T A. Macromolecules, 2011, 44: 7639.
[99] Ogoshi T, Kayama H, Aoki T, Yamagishi T A, Ohashi R, Mizuno M. Polym. J., 2014, 46: 77.
[100] Hu X Y, Zhang P Y, Wu X, Xia W, Xiao T X, Jiang J L, Lin C, Wang L Y. Polym. Chem., 2012, 3: 3060.
[101] Sun S, Hu X Y, Chen D Z, Shi J B, Dong Y P, Lin C, Pan Y, Wang L Y. Polym. Chem., 2013, 4: 2224.
[102] Sun S, Shi J B, Dong Y P, Lin C, Hu X Y, Wang L Y. Chin. Chem. Lett., 2013, 24: 987.
[103] Ji X F, Chen J Z, Chi X D, Huang F H. ACS Macro. Lett., 2014, 3: 110.
[104] Hu X Y, Wu X, Wang S, Chen D Z, Xia W, Lin C, Pan Y, Wang L Y. Polym. Chem., 2013, 4: 4292.

[1] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[2] 王萌, 宋贺, 李烨文. 三维自组装蓝相液晶光子晶体[J]. 化学进展, 2022, 34(8): 1734-1747.
[3] 韩冬雪, 金雪, 苗碗根, 焦体峰, 段鹏飞. 超分子组装体激发态手性的响应性[J]. 化学进展, 2022, 34(6): 1252-1262.
[4] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[5] 刘玉玲, 胡腾达, 李伊莲, 林洋, Borsali Redouane, 廖英杰. 嵌段共聚物薄膜快速自组装方法[J]. 化学进展, 2022, 34(3): 609-615.
[6] 李红, 史晓丹, 李洁龄. 肽自组装水凝胶的制备及在生物医学中的应用[J]. 化学进展, 2022, 34(3): 568-579.
[7] 闫楚璇, 李青璘, 巩正奇, 陈颖芝, 王鲁宁. 纳米有机半导体光催化剂[J]. 化学进展, 2021, 33(11): 1917-1934.
[8] 冯业娜, 刘书河, 张书博, 薛彤, 庄鸿麟, 冯岸超. 基于聚合诱导自组装制备二氧化硅/聚合物纳米复合材料[J]. 化学进展, 2021, 33(11): 1953-1963.
[9] 王子瑄, 王跃飞, 齐崴, 苏荣欣, 何志敏. DNA-多肽复合分子的设计、组装与应用[J]. 化学进展, 2020, 32(6): 687-697.
[10] 智康康, 杨鑫. 天然产物凝胶及其凝胶质[J]. 化学进展, 2019, 31(9): 1314-1328.
[11] 林代武, 邢起国, 王跃飞, 齐崴, 苏荣欣, 何志敏. 多肽超分子手性自组装与应用[J]. 化学进展, 2019, 31(12): 1623-1636.
[12] 刘耀华, 刘育. 基于偶氮功能基的光控超分子组装[J]. 化学进展, 2019, 31(11): 1528-1539.
[13] 徐子悦, 张运昌, 林佳乐, 王辉, 张丹维, 黎占亭. 药物输送体系构筑中的超分子组装策略[J]. 化学进展, 2019, 31(11): 1540-1549.
[14] 郭家田, 卢玉超, 毕晨, 樊佳婷, 许国贺, 马晶军. 刺激响应型肽自组装及其应用[J]. 化学进展, 2019, 31(1): 83-93.
[15] 徐柳, 钱晨, 朱辰奇, 陈志鹏, 陈瑞*. 基于多肽的纳米药物递送系统的研究[J]. 化学进展, 2018, 30(9): 1341-1348.
阅读次数
全文


摘要

准聚轮烷的研究进展