English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1427-1433 DOI: 10.7536/PC140328 前一篇   后一篇

• 综述与评论 •

超声介导微泡基因传递体系的研究

杜建委1, 牟芸2, 王幽香*1   

  1. 1. 浙江大学高分子科学与工程学系 教育部高分子合成与功能构造重点实验室 杭州 310027;
    2. 浙江大学医学院附属第一医院超声影像科 杭州 310027
  • 收稿日期:2014-03-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 王幽香 E-mail:yx_wang@zju.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 51273177,81371571)和浙江省自然科学基金项目(No. LY13H180008)资助

Research of Ultrasound-Mediated Gene Delivery

Du Jianwei1, Mou Yun2, Wang Youxiang*1   

  1. 1. MOE Key Laboratory of Macromolecular Synthesis and Functionalization, Department of Polymer Science and Engineering, Zhejiang University, Hangzhou 310027, China;
    2. Department of Ultrasonography, The First Affiliated Hospital, College of Medicine, Zhejiang University, Hangzhou 310027, China
  • Received:2014-03-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51273177, 81371571) and the Zhejiang Provincial Natural Science Foundation of China(No. LY13H180008)

超声波能够在不损害人体正常组织的条件下,有效到达人体组织深处。超声造影剂(微泡),能够显著提高血液和组织的背向散射强度,广泛应用于心血管疾病的检测中。超声微泡介导基因转染技术是指通过微泡的空化作用,实现超声波能量在靶向组织处的富集和释放,进而促进此处组织细胞对基因药物的内化,达到高效转染的目的。由于具有无创、高效安全的特点,超声微泡介导在基因治疗中具有很大的优势和潜力。利用微泡的超声成像功能实现对病变组织诊断成像,利用靶向组织处的超声实现时间空间可控的目的基因的释放,利用微泡在超声作用下的“声孔效应”,实现基因对多种生物膜的跨膜传递,达到基因药物的可视化传递与高效可控释放的目的。本文主要从超声造影剂的种类、超声微泡介导基因转染的机理、微泡基因传递体系的构建等方面,详细综述了这一领域最新的研究进展,并对超声微泡介导基因转染的发展进行了展望。

Ultrasound wave can reach the deep tissues without any harm to human body. Ultrasound contrast agent (microbubble), which can highly enhance the ultrasound backscatter intensity, is widely employed in ultrasonography. Through the cavitation effects of microbubbles, the energy of ultrasound wave will be easily accumulated at the targeted tissue and finally released with the collapse of the bubbles, which will further promote the internalization of gene/drug into the cells, leading to the high transfection efficiency. Due to its non-invasiveness and safety, recent ultrasound-mediated gene therapy shows great potential via the combination of the clinic-realizable ultrasound microbubble technology and gene vectors. The ultrasound-mediated gene therapy, can not only be used in disease diagnosis, but also promote the spatio-temporal controlled release of drug/gene by sonicating at the targeted tissue. Furthermore, microbubble-induced sonoporation can be used as the driving force to transfer gene vectors into cells by improving the permeability of different biofilm. These will together provide approach to visualization of gene delivery and efficient controlled gene expression. In this paper, the recent progress is reviewed in details from the following aspects: development of microbubbles, the mechanism and influence factors, and construction of ultrasound-mediated gene delivery system. Challenges and prospects of ultrasound-mediated gene delivery system are also discussed.

Contents
1 Introduction
2 Development of microbubbles
3 Mechanism and influence factors of ultrasound- mediated gene delivery
4 Construction of ultrasound-mediated gene delivery system
4.1 Co-administration system
4.2 Gene-loaded microbubbles
4.3 Gene vector-microbubble conjugation system
5 Challenges and prospects

中图分类号: 

()

[1] Ginn S L, Alexander I E, Edelstein M L, Abedi M R, Wixon J. J. Gene. Med., 2013, 15: 65.
[2] 王幽香(Wang Y X), 沈家骢(Shen J C). 科学通报(Chinese Science Bulletin), 2004, 49: 819.
[3] Li W Y, Du J W, Zheng K, Zhang P, Hu Q L, Wang Y X. Chem. Commun., 2014, 50: 1579.
[4] Li J G, Cheng D, Yin T H, Chen W C, Lin Y J, Chen J F, Li R T, Shuai X T. Nanoscale, 2014, 6: 1732.
[5] Peng L, Gao Y, Xue Y N, Huang S W, Zhuo R X. Biomaterials, 2010, 31: 4467.
[6] Zhang M, Xue Y N, Liu M, Zhuo R X, Huang S W. Nanoscale Res. Lett., 2010, 5: 1804.
[7] Wang Y X, Chen P, Shen J C. Biomaterials, 2006, 27: 5292.
[8] Rychak J J, Klibanov A L. Adv. Drug. Deliv. Rev., 2014, 72: 82.
[9] Ferrara K W, Borden M A, Zhang H. Acc. Chem. Res., 2009, 42: 881.
[10] Guo X, Huang L. Acc. Chem. Res., 2011, 45: 971.
[11] Mou Y, Ye Y, Zhao X Y, Yao L, Yan L P, Sun J, Zhu Z H, Hu S J. Ultrasound Med. Biol., 2009, 35: 1638.
[12] 牟芸(Mou Y), 胡申江(Hu S J), 姚磊(Yao L), 郑哲岚(Zheng Z L). 第二届长三角超声医学论坛暨2009年浙江省超声医学学术年会论文汇编(The Second Yangtze Ultrasonic Medical BBS and Ultrasonic Medical Academic Conference Proceedings in Zhejiang Province in 2009). 2009.
[13] Greenleaf W J, Bolander M E, Sarkar G, Goldring M B, Greenleaf J F. Ultrasound Med. Biol., 1998, 24: 587.
[14] Unger E C, Hersh E, Vannan M, Matsunaga T O, McCreery T. Prog. Cardiovasc. Dis., 2001, 44: 45.
[15] 汪国忠(Wang G Z), 胡申江(Hu S J), 郑哲岚(Zheng Z L), 童紫莺(Tong Z Y), 郑霞(Zheng X), 姚宇玫(Yao Y M), 李江(Li J). 中华超声影像学杂志(Chinese Journal of Ultrasonography), 2005, 13: 857.
[16] Negishi Y, Hamano N, Tsunoda Y, Oda Y, Choijamts B, Endo-Takahashi Y, Omata D, Suzuki R, Maruyama K, Nomizu M, Emoto M, Aramaki Y. Biomaterials, 2013, 34: 501.
[17] Tlaxca J L, Rychak J J, Ernst P B, Konkalmatt P R, Shevchenko T I, Pizzaro T T, Rivera-Nieves J, Klibanov A L, Lawrence M B. J. Control. Release, 2013, 165: 216.
[18] Un K, Kawakami S, Yoshida M, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M. Hepatology, 2012, 56: 259.
[19] Un K, Kawakami S, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M. J. Control. Release, 2011, 156: 355.
[20] Omata D, Negishi Y, Hagiwara S, Yamamura S, Endo-Takahashi Y, Suzuki R, Maruyama K, Aramaki Y. J. Drug Target., 2012, 20: 355.
[21] Yan P, Chen K J, Wu J, Sun L, Sung H W, Weisel R D, Xie J, Li R K. Biomaterials, 2014, 35: 1063.
[22] Chen Z, Liang K, Xie M X, Wang X F, Lü Q, Zhang J. Mol. Biol. Rep., 2009, 36: 2059.
[23] Miller D, Pislaru S, Greenleaf J. Somat. Cell. Mol. Genet., 2002, 27: 115.
[24] Lawrie A, Brisken A F, Francis S E, Tayler D I, Chamberlain J, Crossman D C, Cumberland D C, Newman C M. Circulation, 1999, 99: 2617.
[25] Lentacker I, de Cock I, Deckers R, de Smedt S C, Moonen C T. Adv. Drug. Deliv. Rev., 2014, 72: 49.
[26] Suzuki R, Oda Y, Utoguchi N, Maruyama K. J. Control. Release, 2011, 149: 36.
[27] Mehier-Humbert S, Bettinger T, Yan F, Guy R H. J. Control. Release, 2005, 104: 213.
[28] Negishi Y, Endo Y, Fukuyama T, Suzuki R, Takizawa T, Omata D, Maruyama K, Aramaki Y. J. Control. Release, 2008, 132: 124.
[29] Un K, Kawakami S, Yoshida M, Higuchi Y, Suzuki R, Maruyama K, Yamashita F, Hashida M. Biomaterials, 2011, 32: 4659.
[30] Negishi Y, Omata D, Iijima H, Takabayashi Y, Suzuki K, Endo Y, Suzuki R, Maruyama K, Nomizu M, Aramaki Y. Mol. Pharmaceut., 2009,7: 217.
[31] Kawazu T, Hakamada K, Oda Y, Miyake J, Maruyama K, Nagasaki T. Chem. Lett., 2011, 40: 298.
[32] Duvshani-Eshet M, Machluf M. J. Control. Release, 2005, 108: 513.
[33] Lentacker I, Wang N, Vandenbroucke R E, Demeester J, de Smedt S C, Sanders N N. Mol. Pharm., 2009, 6: 457.
[34] 牟芸(Mou Y), 姚磊(Yao L), 郑哲岚(Zheng Z L), 叶炀(Ye Y). 2006年浙江省超声医学学术年会论文汇编(Ultrasonic Medical Academic Conference Proceedings in Zhejiang Province in 2006). 2006.
[35] Koshima R, Suzuki R, Oda Y, Hirata K, Nomura T, Negishi Y, Utoguchi N, Kudo N, Maruyama K. Characterisation of Gene Delivery Using Liposomal Bubbles and Ultrasound (Eds. Matsumoto Y, Crum L A, ter Haar G R). Tokyo: AIP Conference Proceedings, 2011. 330.
[36] Duvshani-Eshet M, Adam D, Machluf M. J. Control. Release, 2006, 112: 156.
[37] Nomikou N, Tiwari P, Trehan T, Gulati K, McHale A P. Acta Biomater., 2012, 8: 1273.
[38] Kinoshita M, Hynynen K. Biochem. Bioph.Res. Commun., 2007, 359: 860.
[39] Suzuki R, Takizawa T, Negishi Y, Hagisawa K, Tanaka K, Sawamura K, Utoguchi N, Nishioka T, Maruyama K. J. Control. Release, 2007, 117: 130.
[40] Alter J, Sennoga C A, Lopes D M, Eckersley R J, Wells D J. Ultrasound Med. Biol., 2009, 35: 976.
[41] Mehier-Humbert S, Yan F, Frinking P, Schneider M, Guy R H, Bettinger T. Bioconju. Chem., 2007, 18: 652.
[42] Taniyama Y, Tachibana K, Hiraoka K, Aoki M, Yamamoto S, Matsumoto K, Nakamura T, Ogihara T, Kaneda Y, Morishita R. Gene Ther., 2002, 9: 372.
[43] Li W Y, Zhang P, Zheng K, Hu Q L, Wang Y X. J. Mater. Chem. B, 2013, 1: 6418.
[44] Li W Y, Wang Y X, Chen L N, Huang Z X, Hu Q L, Ji J. Chem. Commun., 2012, 48: 10126.
[45] Qiu Y Y, Luo Y, Zhang Y L, Cui W C, Zhang D, Wu J R, Zhang J F, Tu J. J. Control. Release, 2010, 145: 40.
[46] 汪国忠(Wang G Z), 胡申江(Hu S J), 郑哲岚(Zheng Z L), 孙坚(Sun J), 郑霞(Zheng X), 朱朝晖(Zhu Z H), 李江(Li J), 姚宇玫(Yao Y M). 生物医学工程学杂志(Journal of Biomedical Engineering), 2006, 23: 856.
[47] Deshpande M C, Prausnitz M R. J. Control. Release, 2007, 118: 126.
[48] Negishi Y, Endo-Takahashi Y, Matsuki Y, Kato Y, Takagi N, Suzuki R, Maruyama K, Aramaki Y. Mol. Pharmaceut., 2012, 9: 1834.
[49] Song S, Noble M, Sun S, Chen L, Brayman A A, Miao C H. Mol. Pharmaceut., 2012, 9: 2187.
[50] Zhou Z Y, Zhang P, Ren J L, Ran H T, Zheng Y Y, Li P, Zhang Q X, Zhang M H, Wang Z G. J. Control. Release, 2013, 170: 437.
[51] Sun L, Huang C W, Wu J, Chen K J, Li S H, Weisel R D, Rakowski H, Sung H W, Li R K. Biomaterials, 2013, 34: 2107.
[52] Yin T H, Wang P, Li J G, Zheng R Q, Zheng B W, Cheng D, Li R T, Lai J Y, Shuai X T. Biomaterials, 2013, 34: 4532.
[53] Un K, Kawakami S, Suzuki R, Maruyama K, Yamashita F, Hashida M. Mol. Pharm., 2011, 8: 543.
[54] Lum A F, Borden M A, Dayton P A, Kruse D E, Simon S I, Ferrara K W. J. Control. Release, 2006, 111: 128.
[55] De Temmerman M L, Dewitte H, Vandenbroucke R E, Lucas B, Libert C, Demeester J, de Smedt S C, Lentacker I, Rejman J. Biomaterials, 2011, 32: 9128.
[56] Sirsi S R, Hernandez S L, Zielinski L, Blomback H, Koubaa A, Synder M, Homma S, Kandel J J, Yamashiro D J, Borden M A. J. Control. Release, 2012, 157: 224.
[57] Cui W, Tavri S, Benchimol M J, Itani M, Olson E S, Zhang H, Decyk M, Ramirez R G, Barback C V, Kono Y, Mattrey R F. Biomaterials, 2013, 34: 4926.
[58] Yin T H, Wang P, Zheng R Q, Zheng B W, Cheng D, Zhang X L, Shuai X T. Int. J. Nanomed., 2012, 7: 895.

[1] 古晓晓, 杜宝吉, 李云辉, 高莹*, 李丹, 汪尔康. 基于纳米材料的基因载体[J]. 化学进展, 2015, 27(8): 1093-1101.
[2] 靳玉慎, 柯亨特, 戴志飞* . 多功能超声造影剂[J]. 化学进展, 2012, 24(12): 2424-2430.
[3] 周义锋. 环境响应的智能小分子有机凝胶材料[J]. 化学进展, 2011, 23(01): 125-135.
[4] 杨凯 汪朝阳 傅建花 谭越河. 物理技术辅助的Knoevenagel反应*[J]. 化学进展, 2010, 22(11): 2126-2133.
[5] 王晓明 滕新荣. 超声化学法制备蛋白质微球[J]. 化学进展, 2010, 22(06): 1086-1093.
[6] 张敏莲 胡丁 刘孟儒 孔宪. 离子交换色谱在药用质粒分析中的应用*[J]. 化学进展, 2010, 22(0203): 482-488.
[7] 唐守渊,夏之宁,付钰洁,勾茜. 微波波谱技术和应用*[J]. 化学进展, 2009, 21(05): 1060-1069.
[8] 袁华,李树茂,于涛,任杰. 高聚物基因载体的功能化研究[J]. 化学进展, 2008, 20(11): 1804-1809.
[9] 王颖,牛军峰,张哲贇,隆兴兴. 超声-光催化降解水中有机污染物*[J]. 化学进展, 2008, 20(10): 1621-1627.
[10] 黎梅,李记太,孙汉文. 超声技术处理水中有机污染物*[J]. 化学进展, 2008, 20(0708): 1187-1195.
[11] 吉伟航,林琳,陈大勇,刘文广. 刺激响应性非病毒转基因载体*[J]. 化学进展, 2008, 20(06): 936-941.
[12] 张悦,于奡,王永健. 聚合物纳米体系在药物和基因载体中的应用*[J]. 化学进展, 2008, 20(05): 740-746.
[13] 王金刚,郭培全,王西奎,顾忠茂. 空化效应在有机废水处理中的应用研究*[J]. 化学进展, 2005, 17(03): 549-553.
[14] 尹秉胜,马厚义,陈慎豪. 电化学技术制备纳米材料研究的新进展*[J]. 化学进展, 2004, 16(02): 196-.
[15] 谢毓元,陈馥衡,覃兆海. 超声波在有机合成中的应用[J]. 化学进展, 1998, 10(01): 63-.