English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1609-1618 DOI: 10.7536/PC140322 前一篇   

• 综述与评论 •

大肠杆菌氧化还原辅因子代谢工程

王白云1,2,3, 王晓玥1,2,3, 王智文*1,2,3, 陈涛1,2,3, 赵学明1,2,3   

  1. 1. 天津大学化工学院 天津 300072;
    2. 系统生物工程教育部重点实验室 天津 300072;
    3. 天津化学化工协同创新中心 天津 300072
  • 收稿日期:2014-03-01 修回日期:2014-05-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 王智文 E-mail:zww@tju.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2011CBA00804,2012CB725203)、国家自然科学基金项目(No. 21206112,21390201)、国家高技术研究发展计划(863)项目(No. 2012AA02A702,2012AA022103)和天津大学自主创新基金项目(No. 1308)资助

Redox Cofactor Metabolic Engineering with Escherichia coli

Wang Baiyun1,2,3, Wang Xiaoyue1,2,3, Wang Zhiwen*1,2,3, Chen Tao1,2,3, Zhao Xueming1,2,3   

  1. 1. School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072;
    2. Key Laboratory of Systems Bioengineering (Ministry of Education), Tianjin University, Tianjin 300072, China;
    3. SynBio Research Platform, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), School of Chemical Engineering and Technology, Tianjin University, Tianjin 300072, China
  • Received:2014-03-01 Revised:2014-05-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Basic Research Program of China (No. 2011CBA00804, 2012CB725203), the National Natural Science Foundation of China (No. 21206112, 21390201), the National High-Tech R & D Program of China (No. 2012AA02A702, 2012AA022103) and the Innovation Foundation of Tianjin University (No.1308)

NAD+、NADP+、NADH、NADPH等四类烟酰胺类辅因子也被称为氧化还原辅因子,是维持细胞氧化还原平衡,驱动胞内许多分解与合成反应的重要分子。近年来,辅因子在生物转化系统中的作用受到研究者的重视,氧化还原辅因子更成为人们关注的重点。文章综述了大肠杆菌(Escherichia coliE. coli)氧化还原辅因子代谢工程研究的最新进展,重点总结最近发展的氧化还原辅因子代谢工程策略,讨论不同代谢工程策略对细胞氧化还原辅因子水平的影响及其在生物合成中的应用,并展望了辅因子代谢工程未来发展方向。

Redox cofactor plays an important role in maintaining cellular redox balance and driving catabolic or anabolic reactions. As the driving force of biochemical reactions and redox carriers, redox cofactor has received much attention for enhancing biotransformation process in recent years. The Gram-negative bacterium Escherichia coli (E. coli) has been studied extensively on a fundamental and applied level and has become a predominant host microorganism for industrial applications. Metabolic engineering of E. coli for the enhanced biochemical production such as bioethanol, organic acids, biopolymer, complex natural compounds and so on, has been significantly promoted by the redox cofactor engineering. This review introduced various strategies to improve productivity and product titers by engineered E. coli through metabolic engineering pathways and key enzymes involved redox cofactor. Advanced metabolic engineering strategies in redox cofactor include metabolic engineering of pathway involved in NAD(P)H biosynthesis, mutual transformation of redox cofactor, expression of heterogeneous redox cofactor dependent enzymes, manipulation of pyridine biosynthesis and NAD+ transportation. These strategies have been successfully implemented in recombinant E. coli to increase cellular availability of desired redox cofactor or change cofactor specificity of key enzymes. While current cofactor strategies just focus on natural metabolic pathways and enzymes, novel strategy needs to be developed for manipulating redox cofactor completely according to the will of the human.

Contents
1 Introduction
2 Metabolic engineering of pathways involved in NAD(P)H biosynthesis
2.1 Pentose phosphate pathway
2.2 Glyoxylate bypass
2.3 Pyruvate metabolic pathway
3 Mutual transformation of redox cofactor
3.1 Transhydrogenase system
3.2 NAD+ kinase and NADH kinase
4 Expression of Heterogeneous redox cofactor dependent enzymes
4.1 Heterogeneous NAD(P)+-dependent enzymes
4.2 Heterogeneous NAD(P)H-dependent enzymes
5 Manipulation of pyridine biosynthesis and NAD+ transportation
6 Perspectives

中图分类号: 

()

[1] Bruschi F, Dundar M, Gahan P B, Gartland K, Szente M, Viola-Magni M P, Akbarova Y. Curr. Opin. Biotechnol., 2011, 22 Suppl 1: S7.
[2] Lee W H, Kim M D, Jin Y S, Seo J H. Appl. Microbiol. Biotechnol., 2013, 97(7): 2761.
[3] Duetz W A, van Beilen J B, Witholt B. Curr. Opin. Biotechnol., 2001, 12(4): 419.
[4] Drepper T, Eggert T, Hummel W, Leggewie C, Pohl M, Rosenau F, Wilhelm S, Jaeger K E. Biotechnol. J., 2006, 1(7/8): 777.
[5] Lee W H, Kim J W, Park E H, Han N S, Kim M D, Seo J H. Appl. Microbiol. Biotechnol., 2013, 97(4): 1561.
[6] Zhao J, Li Q, Sun T, Zhu X, Xu H, Tang J, Zhang X, Ma Y. Metab. Eng., 2013, 17: 42.
[7] Li Z J, Cai L, Wu Q, Chen G Q. Appl. Microbiol. Biotechnol., 2009, 83(5): 939.
[8] Liu R, Liang L, Wu M, Chen K, Jiang M, Ma J, Wei P, Ouyang P. Biochem. Eng. J., 2013, 79: 77.
[9] Chen X, Zhou L, Tian K, Kumar A, Singh S, Prior B A, Wang Z. Biotechnol. Adv., 2013, 31(8): 1200.
[10] Lim S J, Jung Y M, Shin H D, Lee Y H. J. Biosci. Bioeng., 2002, 93(6): 543.
[11] Lee W H, Park J B, Park K, Kim M D, Seo J H. Appl. Microbiol. Biotechnol., 2007, 76(2): 329.
[12] Kim Y M, Cho H S, Jung G Y, Park J M. Biotechnol. Bioeng., 2011, 108(12): 2941.
[13] Chemler J A, Fowler Z L, McHugh K P, Koffas M A. Metab. Eng., 2010, 12(2): 96.
[14] Lee H C, Kim J S, Jang W, Kim S Y. J. Biotechnol., 2010, 149(1/2): 24.
[15] Siedler S, Bringer S, Bott M. Appl. Microbiol. Biotechnol., 2011, 92(5): 929.
[16] Siedler S, Bringer S, Blank L M, Bott M. Appl. Microbiol. Biotechnol., 2012, 93(4): 1459.
[17] Alper H, Jin Y S, Moxley J F, Stephanopoulos G. Metab. Eng., 2005, 7(3): 155.
[18] Wang Y, San K Y, Bennett G N. Appl. Microbiol. Biotechnol., 2013, 97(15): 6883.
[19] Gui L, Sunnarborg A, Pan B, LaPorte D C. J. Bacteriol., 1996, 178(1): 321.
[20] Sanchez A M, Bennett G N, San K Y. Metab. Eng., 2005, 7(3): 229.
[21] Zhu L W, Li X H, Zhang L, Li H M, Liu J H, Yuan Z P, Chen T, Tang Y J. Metab. Eng., 2013, 20C: 9.
[22] Zhou S, Iverson A G, Grayburn W S. Biotechnol. Lett., 2008, 30(2): 335.
[23] Zhou S, Iverson A G, Grayburn W S. Biotechnol. Prog., 2010, 26(1): 45.
[24] Garza E, Zhao J, Wang Y, Wang J, Iverson A, Manow R, Finan C, Zhou S. J. Ind. Microbiol. Biotechnol., 2012, 39(8): 1101.
[25] Iverson A, Garza E, Zhao J, Wang Y, Zhao X, Wang J, Manow R, Zhou S. World Journal of Microbiology and Biotechnology, 2013, 29(7): 1225.
[26] Sauer U, Canonaco F, Heri S, Perrenoud A, Fischer E. J. Biol. Chem., 2004, 279(8): 6613.
[27] Canonaco F, Hess T A, Heri S, Wang T, Szyperski T, Sauer U. FEMS Microbiol. Lett., 2001, 204(2): 247.
[28] Cao Z, Song P, Xu Q, Su R, Zhu G. FEMS Microbiol. Lett., 2011, 320(1): 9.
[29] Van der Donk W A, Zhao H. Curr. Opin. Biotechnol., 2003, 14(4): 421.
[30] Sanchez A M, Andrews J, Hussein I, Bennett G N, San K Y. Biotechnol. Prog., 2006, 22(2): 420.
[31] Rathnasingh C, Raj S M, Lee Y, Catherine C, Ashok S, Park S. J. Biotechnol., 2012, 157(4): 633.
[32] Atsumi S, Wu T Y, Eckl E M, Hawkins S D, Buelter T, Liao J C. Appl. Microbiol. Biotechnol., 2010, 85(3): 651.
[33] Bastian S, Liu X, Meyerowitz J T, Snow C D, Chen M M, Arnold F H. Metab. Eng., 2011, 13(3): 345.
[34] Shi A, Zhu X, Lu J, Zhang X, Ma Y. Metab. Eng., 2013, 16(1): 1.
[35] Lee H C, Kim J S, Jang W, Kim S Y. Biotechnol. Lett., 2009, 31(12): 1929.
[36] Park H J, Jung J, Choi H, Uhm K N, Kim H K. J. Microbiol. Biotechnol., 2010, 20(9): 1300.
[37] Zhang J D, Li A T, Yu H L, Imanaka T, Xu J H. J. Ind. Microbiol. Biotechnol., 2011, 38(5): 633.
[38] Schewe H, Kaup B A, Schrader J. Appl. Microbiol. Biotechnol., 2008, 78(1): 55.
[39] Zhou P, Li S, Xu H, Feng X, Ouyang P. Enzyme Microb. Technol., 2012, 51(2): 119.
[40] Ma S M, Garcia D E, Redding-Johanson A M, Friedland G D, Chan R, Batth T S, Haliburton J R, Chivian D, Keasling J D, Petzold C J, Soon Lee T, Chhabra S R. Metab. Eng., 2011, 13(5): 588.
[41] Balzer G J, Thakker C, Bennett G N, San K Y. Metab. Eng., 2013, 20C: 1.
[42] Martin V J, Pitera D J, Withers S T, Newman J D, Keasling J D. Nat. Biotechnol., 2003, 21(7): 796.
[43] Martínez I, Zhu J, Lin H, Bennett G N, San K Y. Metab. Eng., 2008, 10(6): 352.
[44] Wang Y, San K Y, Bennett G N. J. Ind. Microbiol. Biotechnol., 2013, 1.
[45] Peng G J, Cho Y C, Fu T K, Yang M T, Hsu W H. Process Biochem., 2013, 48(10): 1509.
[46] San K Y, Bennett G N, Berrios-Rivera S J, Vadali R V, Yang Y T, Horton E, Rudolph F B, Sariyar B, Blackwood K. Metab. Eng., 2002, 4(2): 182.
[47] Berrios-Rivera S J, San K Y, Bennett G N. Metab. Eng., 2002, 4(3): 238.
[48] Liang L, Liu R, Wang G, Gou D, Ma J, Chen K, Jiang M, Wei P, Ouyang P. Enzyme Microb. Technol., 2012, 51(5): 286.
[49] Zhou Y J, Yang W, Wang L, Zhu Z, Zhang S, Zhao Z K. Microb. Cell Fact., 2013, 12(1): 103.
[50] Ji D, Wang L, Hou S, Liu W, Wang J, Wang Q, Zhao Z K. J. Am. Chem. Soc., 2011, 133(51): 20857.

[1] 李忠民, 郭良宏. 氟调醇的环境污染与毒理学研究[J]. 化学进展, 2016, 28(7): 993-1005.
[2] 付晶, 王萌, 刘维喜, 陈涛* . 生物法制备2,3-丁二醇的最新进展[J]. 化学进展, 2012, 24(11): 2268-2276.
[3] 李厚金, 蓝文健. 天然单萜柠檬烯的微生物转化[J]. 化学进展, 2011, 23(11): 2318-2325.
[4] 王德先 王梅祥. 含三元环腈的生物转化反应与应用*[J]. 化学进展, 2010, 22(07): 1397-1402.
[5] 王智文 马向辉 陈洵 赵学明 陈涛. 微生物代谢物组学的研究方法与进展*[J]. 化学进展, 2010, 22(01): 163-172.
[6] 马大友. 生物催化不对称合成beta-羟基酸衍生物[J]. 化学进展, 2008, 20(11): 1687-1693.
[7] 陈振明,刘金华,陶军华. 生物催化在绿色化学和新药开发中的应用*[J]. 化学进展, 2007, 19(012): 1919-1927.