English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1492-1505 DOI: 10.7536/PC140319 前一篇   后一篇

• 综述与评论 •

手性催化剂在不对称羰基ene反应中的应用

张永丽, 张瑞, 常宏宏, 魏文珑*, 李兴*   

  1. 太原理工大学 化学化工学院 太原 030024
  • 收稿日期:2014-03-01 修回日期:2014-05-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 魏文珑, 李兴 E-mail:weiwenlong@tyut.edu.cn;lixing@tyut.edu.cn
  • 基金资助:

    山西省自然科学基金项目(No.2012021007-2,2011011010-2)和山西省高等教育机构科技创新项目基金(No. 20120006)资助

Asymmetric Carbonyl-ene Reactions Promoted by Chiral Catalysts

Zhang Yongli, Zhang Rui, Chang Honghong, Wei Wenlong*, Li Xing*   

  1. College of Chemistry and Chemical Engineering, Taiyuan University of Technology, Taiyuan 030024, China
  • Received:2014-03-01 Revised:2014-05-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the Natural Science Foundation of Shanxi Province (No. 2012021007-2, 2011011010-2), and the Scientific and Technological Innovation Programs of Higher Education Institutions in Shanxi (No. 20120006)

手性高烯丙基醇类化合物是一类非常重要的有机合成中间体,被广泛应用于药物分子和天然产物的合成中,不对称羰基ene反应是构建此类化合物最有效的方法之一,近年来已经取得了巨大进展。目前,在不对称羰基ene反应中的手性催化剂主要有如Mg、Ca、Sc、Ti、Co、Ni、Cu、Rh、Pd、Pt等金属与手性配体络合形成的配合物,以及一些手性有机小分子,大部分都取得了较好的催化活性与对映选择性。本文就此评述了各类手性催化剂在不对称羰基ene反应中的应用,不对称诱导反应的机理,以及催化剂分子结构及反应条件对催化活性和对映选择性的影响。

Chiral homoallylic alcohols are important drug intermediates for synthesis of pharmaceutical molecules and nature products. Asymmetric carbonyl-ene reaction is a powerful tool for the preparation of them. The chiral catalysts reported include chiral organometallic complexs and chiral organic molecules, which have achieved good catalytic activity and enantioselectivity. This paper reviews the application of various types of chiral catalysts in asymmetric carbonyl-ene reactions, the reaction mechanism of asymmetric induction, the effect of the structure of the catalysts and reaction conditions on the catalytic activity and enantioselectivity.

Contents
1 Introduction
2 Application of chiral organometallic catalysts in carbonyl-ene reaction
2.1 Chiral alkaline earth metal catalyst
2.2 Chiral transition metal catalyst
2.3 Chiral indium catalyst
3 Chiral organocatalyst
3.1 Chiral phosphorus amide
3.2 Chiral binaphthol and its derivatives
4 Conclusion and outlook

中图分类号: 

()

[1] (a) Mikami K. Pure Appl. Chem., 1996, 68: 639.; (b) Terada M, Soga K, Momiyama N. Angew. Chem. Int. Ed., 2008, 47: 4122.; (c) Mikami K, Kakuno H, Akiyama K. Angew. Chem. Int. Ed., 2005, 44: 7257.
[2] (a) Mikami K, Shimizu M. Chem. Rev., 1992, 92: 1021.; (b) 戴立信(Dai L X), 陆熙炎(Lu X Y), 朱光美(Zhu G M). 化学通报(Chemistry), 1995, 6: 15.; (c) 谢建华(Xie J H), 周其林(Zhou Q L). 化学学报(Acta Chim. Sinica), 2012, 70: 1427.
[3] Clarke M L, France M B. Tetrahedron 2008, 64: 9003.
[4] (a) Nicolaou K C, Kim D W, Baati R. Angew. Chem. Int. Ed., 2002, 41: 3701.; (b)Hornberger K R, Hamblet C L, Leighton J L. J. Am. Chem. Soc., 2000, 122: 12894.; (c) Felpin F X, Lebreton J. J. Org. Chem., 2002, 67: 9192.
[5] Sakane T, Uaruoka K, Yamamoto H. Tetrahedron, 1986, 42: 2203.
[6] Mikami K, Terada M, Nakai T. J. Am. Chem. Soc., 1990, 112: 3949.
[7] Evans D A, Christopher S B, Nick A, Vojkovsky P T, Tregay S W. J. Am. Chem. Soc., 1998, 120: 5824.
[8] Bedeschi P, Casolan S, Costa A L, Tagliavini E. Tetrohedron Lett., 1995, 36: 7897.
[9] Okazaki E, Okamoto R, Shibata Y, Noguchi K, Tanaka K. Angew. Chem. Int. Ed., 2012, 51: 6722.
[10] Becker J J, White P S, Gagné M R. J. Am. Chem. Soc., 2001, 123: 9478.
[11] Denmark S E, Coe D M, Pratt N E, Griedel B D. J. Org. Chem., 1994, 59: 6161.
[12] Rueping M, Theissmann T, Kuenkel A, Koenigs R M. Angew. Chem. Int. Ed., 2008, 47: 6798.
[13] Liu X H, Lin L L, Feng X M. Acc. Chem. Res., 2011, 44: 574.
[14] Liu X H, Lin L L, Feng X M. Org. Chem. Front., 2014, 1: 298.
[15] Zheng K, Yang Y, Zhao J N, Yin C K, Lin L L, Liu X H, Feng X M. Chem. Eur. J., 2010, 16: 9969.
[16] Zheng K, Yin C K, Yin C K, Liu X H, Lin L L, Feng X M. Angew. Chem. Int. Ed., 2011, 50: 2573.
[17] Li X, Liu X H, Fu Y Z, Wang L J, Zhou L, Feng X M. Chem. Eur. J., 2008, 14: 4796.
[18] Rueping M, Bootwicha T, Kambutong S, Sugiono E, Chem. Asian. J., 2012, 7: 1195.
[19] Evans D A, Wu J. J. Am. Chem. Soc., 2005, 127: 8006.
[20] Hanawa H, Uraguchi D, Konishi S, Hashimoto T, Maruoka K. Chem. Eur. J., 2003, 9: 4405.
[21] Yamada Y M A, Ichinohe M, Takahashi H, Ikegami S. Tetrahedron Lett., 2002,43: 3431.
[22] Hanawa H, Hashimoto T, Maruoka K. J. Am. Chem. Soc., 2003, 125: 1708.
[23] Guo H C, Wang X G, Ding K L. Tetrahedron Lett., 2004, 45: 2009.
[24] Wang X S, Wang X W, Guo H C, Wang Z, Ding K L. Chem. Eur. J., 2005, 11: 4078.
[25] Fang F, Xie F, Yu H, Zhang H, Yang B, Zhang W B. Tetrahedron Lett., 2009, 50: 6672.
[26] Liu X, Bai S Y, Yang Y, Li B, Xiao B, Li C, Yang Q H. Chem. Commun., 2012, 48: 3191.
[27] Kezuka S, Ikeno T, Yamada T. Org. Lett., 2001, 3: 1937.
[28] Zhang X, Luck R L, Fang S Y. Organometallics, 2011, 30: 2609.
[29] Zheng K, Shi J, Liu X H, Feng X M. J. Am. Chem. Soc., 2008, 130: 15770.
[30] 郑柯(Zheng K), 林丽丽(Lin L L), 冯小明(Feng X M). 化学学报(Act Chim. Sinica), 2012, 70: 1785.
[31] Mandoli A, Orlandi S, Pini D, Salvadori P. Tetrahedron: Asymmetry, 2004, 15: 3233.
[32] Wakita K, Bajracharya G B, Arai M A, Takizawa S, Suzuki T, Sasai H. Tetrahedron: Asymmetry, 2007, 18: 372.
[33] Kim M, Jeong H S, Yeom C E, Kim B M. Tetrahedron: Asymmetry, 2012, 23: 1019.
[34] Wang X C, Weigl C, Doyle M P. J. Am. Chem. Soc., 2011, 133: 9572.
[35] Wang T, Hao X Q, Huang J J, Niu J L, Gong J F, Song M P. J. Org. Chem., 2013, 78: 8712.
[36] Hao J, Hatano M, Mikami K. Org. Lett., 2000, 2: 4059.
[37] Becker J J, Orden L J V, White P S, Gagné M R. Org. Lett., 2002, 4: 727.
[38] Mikami K, Aikawa K, Kainuma S, Kawakami Y, Saito T, Sayo N, Kumobayashi H. Tetrahedron: Asymmetry, 2004, 15: 3885.
[39] Luo H K,Woo Y L, Schumann H, Jacob C, Meurs M V, Yang H Y, Tan Y T. Adv. Synth. Catal., 2010, 352: 1356.
[40] Doherty S, Knight J G, Hamid M Z. Tetrahedron: Asymmetry, 2012, 23: 209.
[41] Koh J H, Larsen A O, Gagné M R. Org. Lett., 2001, 3: 1233.
[42] Doherty S, Goodrich P, Hardacre C, Luo H K, Nieuwenhuyzen M, Rath R K. Organometallics, 2005, 24: 5945.
[43] Doherty S, Knight J G, Smyth C H, Harrington R W, Clegg W. Organometallics, 2007, 26: 6453.
[44] Zhang X, Chen D H, Liu X H, Feng X M. J. Org. Chem., 2007, 72: 5227.
[45] Zhao J F, Tsui H Y, Wu P J, Lu J, Loh T P. J. Am. Chem. Soc., 2008, 130: 16492.
[46] Zhao J F, Tjan T B W, Tan B H, Loh T P. Org. Lett., 2009, 11: 5714.
[47] Zhao J F, Tjan T B W, Loh T P. Tetrahedron Lett., 2010, 51: 5649.
[48] Denmark S E, Fu J P, Coe D M, Su X P, Pratt N E, Griedel B D. J. Org. Chem., 2006, 71: 1513.

[1] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[2] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[3] 易享炎, 黄菲, JonathanB.Baell, 黄和, 于杨. 可见光催化C(sp 3)-C(sp 3)键的构筑[J]. 化学进展, 2019, 31(4): 505-515.
[4] 唐雨平, 何艳梅, 冯宇, 范青华. 基于大环主体化合物的不对称超分子催化[J]. 化学进展, 2018, 30(5): 476-490.
[5] 张宇, 刘小华, 林丽丽, 冯小明*. 催化不对称傅-克反应研究进展[J]. 化学进展, 2018, 30(5): 491-504.
[6] 韩志勇, 龚流柱*. 手性有机小分子和钯联合不对称催化[J]. 化学进展, 2018, 30(5): 505-512.
[7] 罗钧, 郑炎松. 手性杯芳烃及其超分子手性[J]. 化学进展, 2018, 30(5): 601-615.
[8] 牛凡凡, 聂昌军, 陈勇, 孙小玲. 非官能化烯烃的不对称催化环氧化反应[J]. 化学进展, 2014, 26(12): 1942-1961.
[9] 靳清贤, 李晶, 李孝刚, 张莉, 方少明, 刘鸣华. 超分子凝胶的手性功能应用:手性分子识别与不对称催化[J]. 化学进展, 2014, 26(06): 919-930.
[10] 喻理德, 崔汉峰*, 樊浩, 任淑慧, 林艳. 手性季鏻盐相转移催化剂在不对称反应中的应用[J]. 化学进展, 2013, 25(05): 744-751.
[11] 李高伟, 王晓娟, 赵文献, 鲁刘杰, 刘冠军, 王敏灿. Trost氮杂半冠醚手性配体在不对称催化反应中的应用[J]. 化学进展, 2012, 24(0203): 348-360.
[12] 林丽丽 刘小华 冯小明. 手性三齿席夫碱金属络合物催化的不对称反应*[J]. 化学进展, 2010, 22(07): 1353-1361.
[13] 徐立进 易兵 党丽敏 汤卫军. 离子液体中的不对称催化反应*[J]. 化学进展, 2010, 22(07): 1254-1273.
[14] 刘继,马保德,阳年发,范青华. 可溶性高分子负载催化剂*[J]. 化学进展, 2010, 22(07): 1457-1470.
[15] 汪海明,王正,丁奎岭. 手性自负载催化剂研究新进展[J]. 化学进展, 2010, 22(07): 1471-1481.
阅读次数
全文


摘要