English
新闻公告
More
化学进展 2014, Vol. 26 Issue (09): 1471-1491 DOI: 10.7536/PC140310 前一篇   后一篇

• 综述与评论 •

Thorpe-Ingold效应及其在有机成环反应中的应用

郑勇鹏*, 许家喜   

  1. 北京化工大学理学院有机化学系 化工资源有效利用国家重点实验室 北京 100029
  • 收稿日期:2014-03-01 修回日期:2014-06-01 出版日期:2014-09-15 发布日期:2014-07-09
  • 通讯作者: 许家喜 E-mail:jxxu@mail.buct.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21372025,21172017)和国家重点基础研究发展规划(973)项目(No. 2013CB328905)资助

Thorpe-Ingold Effect and Its Application in Cyclizations in Organic Chemistry

Zheng Yongpeng*, Xu Jiaxi   

  1. State Key Laboratory of Chemical Engineering, Department of Organic Chemistry, Faculty of Science, Beijing University of Chemical Technology, Beijing 100029, China
  • Received:2014-03-01 Revised:2014-06-01 Online:2014-09-15 Published:2014-07-09
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21372025, 21172017) and the National Basic Research Program of China (Program 973) (No. 2013CB328905)

本文首先介绍了Thorpe-Ingold效应及其相关理论和实验研究进展,然后综述了近年来Thorpe-Ingold效应在形成三、四、五和六元环产物的环化反应中的应用。Thorpe-Ingold效应可以有效地促进分子内和分子间环化,提高环化的产率和速率。该效应主要通过空间效应、电子效应或者两者协同起作用,在某些情况下,该效应还会受催化剂和溶剂等影响。利用该效应可以促使一些难以发生的环化反应顺利进行,并能获得较好的产率。

The Thorpe-Ingold effect and its advances in both theoretical and experimental studies are introduced briefly. Its recent applications in cyclizations for formations of three-, four-, five-, and six-membered ring products are reviewed. The Thorpe-Ingold effect can promote intra- and intermolecular cyclizations effectively, accelerating reaction rates and improving yields in cyclizations. The effect exerts its influence in reactions through steric hindrance and/or electronic effect and is impacted by catalysts and solvents in some cases. Application of the effect can help some difficult cyclization reactions to occur smoothly, affording the desired products in good yields.

Contents
1 Thorpe-Ingold effect
2 Application in cyclizations involving formations of three-membered ring products
2.1 Cyclopropane derivatives
2.2 Ethylene oxide derivatives
3 Application in cyclizations involving formations of four-membered ring products
3.1 Cyclobutane deivatives
3.2 Oxacyclobutane derivatives
4 Application in cyclizations involving formations of five-membered ring products
4.1 Cyclopentane derivatives
4.2 Azacyclopentane derivatives
4.3 Oxacyclopentane derivatives
4.4 Thiazolidine derivatives
4.5 Phosphacyclopentane derivatives
4.6 Silicacyclopentane derivatives
5 Application in cyclizations involving formations of six-membered ring products
5.1 Cyclohexane derivatives
5.2 Azacyclohexane derivatives
5.3 Oxacyclohexane derivatives
5.4 Silicacyclohexane derivatives
6 Miscellaneous
7 Summary and prospects

中图分类号: 

()

[1] Jung M E, Piizzi G. Chem. Rev., 2005, 105: 1735.
[2] (a) Beesley R M, Ingold C K, Thorpe J F. J. Chem. Soc., 1915, 107: 1080; (b) Ingold C. K. J. Chem. Soc., 1921, 119: 305; (c) Ingold C K, Sako S, Thorpe J F. J. Chem. Soc., 1922, 120: 1117; (d) Lightstone F C, Bruice T C. J. Am. Chem. Soc., 1994, 116: 10789.
[3] Von Ragué Schleyer P J. Am. Chem. Soc., 1961, 83: 1368.
[4] Galli C, Giovannelli G, Illuminati G, Mandolini L. J. Org. Chem., 1979, 44: 1258.
[5] (a) Bruice T C, Pandit U K. J. Am. Chem. Soc., 1960, 82: 5858; (b) Bruice T C, Pandit U K. Proc. Natl. Acad. Sci. U. S. A., 1960, 46: 402.
[6] Jung M E, Gervay J. J. Am. Chem. Soc., 1991, 113: 224.
[7] Allinger N L, Zalkow V. J. Org. Chem., 1960, 25: 701.
[8] (a) Karaman R. Tetrahedron Lett., 2009, 50: 6083; (b) Brown R F, Van Gulick N M. J. Org. Chem., 1956, 21: 1046.
[9] Kostal J, Jorgensen W L. J. Am. Chem. Soc., 2010, 132: 8766.
[10] Lambert T H, Coscia R W. J. Am. Chem. Soc., 2009, 131: 2496.
[11] Nilsson H, Smith L Z. Phys. Chem., 1933, 166: 136.
[12] Bloodworth A J, Davies A G, Griffin I M, Muggleton B, Roberts B P. J. Am. Chem. Soc., 1974, 96: 7599.
[13] (a) Jung M E, Trifunovich I D, Lensen N. Tetrahedron Lett., 1992, 33: 6719; (b) Jung M E, Kiankarimi M. J. Org. Chem., 1995, 60: 7013; (c) Jung M E, Marquez R. Tetrahedron Lett., 1997, 38: 6521; (d) Jung M E, Kiankarimi M. J. Org. Chem., 1998, 63: 2968; (e) Jung M E, Marquez R, Houk K N. Tetrahedron Lett., 1999, 40: 2661; (f) Jung M E. Synlett, 1999, 843.
[14] Chaumontet M, Piccardi R, Audic N, Hitce J, Peglion J L, Clot E, Baudoin O. J. Am. Chem. Soc.,2008, 130: 15157.
[15] Shiina I, Umezaki Y, Kuroda N, Iizumi T, Nagai S, Katoh T. J. Org. Chem., 2012, 77: 4885.
[16] Thamapipol S, Bernardinelli G., Besnard C, Kundig E P. Org. Lett., 2010, 12: 5604.
[17] Bouwkamp M W, Bowman A C, Lobkovsky E, Chirik P J. J. Am. Chem. Soc., 2006, 128: 13340.
[18] Li M, Datta S, Barber D M, Dixon D. J. Org. Lett., 2012, 14: 6350.
[19] Nelson B, Herres-Pawlis S, Hiller W, Preut H, Strohmann C, Hiersemann M. J. Org. Chem., 2012, 77: 4980.
[20] Nemoto T, Ishige Y, Yoshida M, Kohno Y, Kanematsu M, Hamada Y. Org. Lett., 2010, 12: 5020.
[21] Gidlöf R, Johansson M, Sterner O. Org. Lett., 2010, 12: 5100.
[22] Kim N, Kim Y, Park W, Sung D, Gupta A K, Oh C H. Org. Lett., 2005, 7: 5289.
[23] Tanaka K, Wada A, Noguchi K. Org. Lett., 2006, 8: 907.
[24] Kezuka S, Tanaka S, Ohe T, Nakaya Y, Takeuchi R J. Org. Chem., 2006, 71: 543.
[25] Amatore M, Leboeuf D, Malacria M, Gandon V, Aubert C. J. Am. Chem. Soc., 2013, 135 (12): 4576.
[26] Yun S Y, Wang K P, Lee N K, Mamidipalli P, Lee D. J. Am. Chem. Soc., 2013, 135: 4668.
[27] Smith D M, Pulling M E, Norton J R. J. Am. Chem. Soc., 2007, 129: 770.
[28] Wong Y C, Tseng C T, Kao T T, Yeh Y C, Shia K S. Org. Lett., 2012, 14: 6024.
[29] Geum S, Lee H Y. Org. Lett., 2014, 16: 2466.
[30] (a) Bexrud J A, Beard J D, Leitch D C, Schafer L L. Org. Lett., 2005, 7: 1959; (b) Chong E, Qayyum S, Schafer L L, Kempe R. Organometallics, 2013, 32: 1858.
[31] Crimmin M R, Arrowsmith M, Barrett A G M, Casely I J, Hill M S, Procopiou P A. J. Am. Chem. Soc., 2009, 131: 9670.
[32] Zhang X, Emge T J, Hultzsch K C. Organometallics, 2010, 29: 5871.
[33] Kim J Y, Livinghouse T. Org. Lett., 2005, 7: 4391.
[34] Lu E, Gan W, Chen Y. Dalton Trans., 2011, 40: 2366.
[35] Wang X, Chen Z, Sun X L, Tang Y, Xie Z. Org. Lett., 2011, 13: 4758.
[36] Liu Z, Hartwig J F. J. Am. Chem. Soc., 2008, 130: 1570.
[37] (a) Gribkov D V, Hultzsch K C, Hampel F. J. Am. Chem. Soc., 2006, 128: 3748; (b) Reznichenko A L, Hultzsch K C. Organometallics, 2013, 32: 1394; (c)Zhang Y, Yao W, Li H, Mu Y. Organometallics, 2012, 31: 4670.
[38] (a) Otero A, Lara-Sánchez A, Nájera C, Fernández-Baeza J, Márquez-Segovia I, Castro-Osma J A, Martínez J, Sánchez-Barba L F, Rodríguez A M. Organometallics, 2012, 31: 2244; (b) Riegert D, Collin J, Meddour A, Schulz E, Trifonov A. J. Org. Chem., 2006, 71: 2514.
[39] (a) Hayes C E, Platel R H, Schafer L L, Leznoff D B. Organometallics, 2012, 31: 6732; (b) Stubbert B D, Marks T J. J. Am. Chem., 2007, 129: 4253.
[40] Bauer E B, Andavan G T S, Hollis T K, Rubio R J, Cho J, Kuchenbeiser G R, Helgert T R, Letko C S, Tham F S. Org. Lett., 2008, 10: 1175.
[41] Liu G Q, Li W, Wang Y M, Ding Z Y, Li Y M. Tetrahedron Lett., 2012, 53: 4393.
[42] Hirner J J, Roth K E, Shi Y, Blum S A. Organometallics, 2012, 31: 6843.
[43] Lo V K Y, Guo Z, Choi M K W, Yu W Y, Huang J S, Che C M. J. Am. Chem. Soc., 2012, 134: 7588.
[44] Wasa M, Yu J Q. J. Am. Chem. Soc., 2008, 130: 14058.
[45] Sibbald P A, Michael F E. Org. Lett., 2009, 11: 1147.
[46] Xing D, Yang D. Org. Lett., 2013, 15: 4370.
[47] Brown A R, Uyeda C, Brotherton C A, Jacobsen E N. J. Am. Chem. Soc., 2013, 135: 6747.
[48] Kaneti J, Kirby A J, Koedjikov A H, Pojarlieff I G. Org. Biomol. Chem., 2004, 2: 1098.
[49] Jung M E, Vu B T. Tetrahedron Lett., 1996, 37: 451.
[50] Nakamura M, Takahashi I, Yamada S, Dobashi Y, Kitagawa O. Tetrahedron Lett., 2011, 52: 53.
[51] Sun C, Fang Y, Li S, Zhang Y, Zhao Q, Zhu S, Li C, Org. Lett., 2009, 11: 4084.
[52] Patil N T, Raut V S, Kavthe R D, Reddy V V N, Raju P V K. Tetrahedron Lett., 2009, 50: 6576.
[53] Takemura N, Kuninobu Y, Kanai M. Org. Lett., 2013, 15: 844.
[54] (a) Yang M, Jiang X, Shi W J, Zhu Q L, Shi Z J. Org. Lett., 2013, 15: 690; (b) Cheng X F, Li Y, Su Y M, Yin F, Wang J Y, Sheng J, Vora H U, Wang X S, Yu J Q. J. Am. Chem. Soc., 2013, 135: 1236.
[55] Antoniotti S, Duach E. Tetrahedron Lett., 2009, 50: 2536.
[56] Ting C M, Wang C D, Chaudhuri R, Liu R S. Org. Lett., 2011, 13: 1702.
[57] Genin E, Toullec P Y, Antoniotti S, Brancour C, Genêt J P, Michelet V. J. Am. Chem. Soc., 2006, 128: 3112.
[58] (a) Yu X, Seo S, Marks T J. J. Am. Chem. Soc., 2007, 129: 7244; (b) Seo S,Yu X,Marks T J. J. Am. Chem. Soc.,2008, 131: 263.
[59] Dzudza A, Marks T. J. Org. Lett., 2009, 11:1523.
[60] Brinkmann C, Barrett A G M, Hill M S, Procopiou P A, Reid S. Organometallics, 2012, 31: 7287.
[61] Just Z W, Larock R C. J. Org. Chem., 2008, 73: 2662.
[62] Wang C, Russell G A. J. Org. Chem., 1999, 64: 2066.
[63] Kayaki Y, Yamamoto M, Ikariya T. J. Org. Chem., 2007, 72: 647.
[64] (a) Neatu F, Parvulescu V I, Michelet V, Genet J P, Goguet A, Hardacre C. New J. Chem., 2009, 33: 102; (b) Neatu F, Protesescu L, Florea M, Parvulescu V I, Teodorescu C M, Apostol N, Toullec P Y, Michelet V. Green Chem., 2010, 12: 2145.
[65] Takizawa S, Nguyen T M N, Grossmann A, Suzuki M, Enders D, Sasai H. Tetrahedron, 2013, 69: 1202.
[66] Lin A, Zhang Z W, Yang J. Org. Lett., 2014, 16: 386.
[67] Schemid M B, Zeitler K, Gschwind R M. J. Am. Chem. Soc., 2011, 133: 7065.
[68] Chen N, Huang Z Y, Zhou C, Xu J X. Tetrahedron, 2011, 67: 7971.
[69] Eom D, Jeong Y, Kim Y R, Lee E, Choi W, Lee P H. Org. Lett., 2013, 15: 5210.
[70] Ishida N, Ikemoto W, Murakami M. Org. Lett., 2012, 14: 3230.
[71] Zhao J, Liu S, Marino N, Clark D A. Chem. Sci., 2013, 4: 1547.
[72] Li B, Driess M, Hartwig J F. J. Am. Chem. Soc. 2014, 136, 6586.
[73] Kitagaki S, Kajita M, Narita S, Mukai C. Org. Lett., 2012, 14: 1366.
[74] Kern N, Blanc A, Miaskiewicz S, Robinette M, Weibel J M, Pale P. J. Org. Chem., 2012, 77: 4323.
[75] (a) Lee I S, Kang E H, Park H, Choi T L. Chem. Sci., 2012, 3: 761; (b) Park H, Lee H K, Choi T L. Polym. Chem., 2013, 4: 4676.
[76] Thalji R K, Ahrendt K A, Bergman R G, Ellman J A. J. Org. Chem., 2005, 70: 6775.
[77] Hart-Cooper W M, Clary K N, Toste F D, Bergman R G, Raymond K N. J. Am. Chem. Soc., 2012, 134: 17873.
[78] (a) Onodera G, Suto M, Takeuchi R. J. Org. Chem., 2012, 77: 908; (b) Onodera G, Shimizu Y, Kimura J-n, Kobayashi J, Ebihara Y, Kondo K, Sakata K, Takeuchi R. J. Am. Chem. Soc., 2012, 134: 10515.
[79] Jung M S, Kim W S, Shin Y H, Jin H J, Kim Y S, Kang E. J. Org. Lett., 2012, 14: 6262.
[80] Xu X, Chen Y, Feng J, Zou G, Sun J. Organometallics, 2010, 29: 549.
[81] Ying Y, Kim H, Hong J. Org. Lett., 2011, 13: 796.
[82] Mancuso R, Mehta S, Gabriele B, Salerno G, Jenks W S, Larock R C. J. Org. Chem., 2009, 75: 897.
[83] Lu Y, Wang D H, Engle K M, Yu J Q. J. Am. Chem. Soc., 2010, 132: 5916.
[84] Varela-Fernaández A, Gonzaález-Rodríguez C, Varela J S A, Castedo L, Saá C. Org. Lett., 2009, 11: 5350.
[85] Murphy S K, Dong V M. J. Am. Chem. Soc., 2013, 135: 5553.
[86] Kim H, Hong J. Org. Lett., 2010, 12: 2880.
[87] Lee N K, Yun S Y, Mamidipalli P, Salzman R M, Lee D, Zhou T, Xia Y. J. Am. Chem. Soc., 2014, 136:4363.
[88] Lanier M L, Kasper A C, Kim H, Hong J. Org. Lett., 2014, 16: 2406.
[89] Rijn J A, Gouré E, Siegler M A, Spek A L, Drent E, Bouwman E. J. Organometallic Chem., 2011, 696: 1899.
[90] Mahendar L, Krishna J, Reddy A G K, Ramulu B V, Satyanarayana G. Org. Lett., 2012, 14: 628.
[91] Albert J, Ariza X, Calvet T, Font-Bardia M, Garcia J, Granell J, Lamela A, López B, Martinez M, Ortega L, Rodriguez A, Santos D. Organometallics, 2013, 32: 649.

[1] 秦瑞轩, 邓果诚, 郑南峰. 金属纳米材料表面配体聚集效应[J]. 化学进展, 2020, 32(8): 1140-1157.
[2] 李路瑶, 徐鑫尧, 朱博, 常俊标. 吡唑酮化合物在催化不对称反应中的应用[J]. 化学进展, 2020, 32(11): 1710-1728.
[3] 杨宇东, 游劲松. 基于螯合导向C—H/C—H氧化交叉偶联/环化反应策略构筑稠杂芳烃化合物[J]. 化学进展, 2020, 32(11): 1824-1834.
[4] 王建东, 许家喜. 含邻手性碳原子双键亲电加成反应的立体选择性模型[J]. 化学进展, 2016, 28(6): 784-800.
[5] 邓云盼, 杨波, 余刚, 卓琼芳, 邓述波, 张鸿. 金属配合物催化氢解脱卤研究[J]. 化学进展, 2016, 28(4): 564-576.
[6] 张文生, 李伟, 匡春香. 1,1-二溴-2-取代苯基乙烯在环化反应中的应用[J]. 化学进展, 2013, 25(07): 1149-1157.
[7] 王琦芳,宋肖锴,颜朝国. 丙二腈在多组分反应中的应用* [J]. 化学进展, 2009, 21(05): 997-1007.
[8] 廉永福,袁福龙,郭丽华,刘美玲. 内嵌金属富勒烯的笼外化学修饰*[J]. 化学进展, 2008, 20(06): 909-917.