English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1329-1338 DOI: 10.7536/PC140231 前一篇   后一篇

• 综述与评论 •

新型力学性能增强二氧化硅气凝胶块体隔热材料

邵再东1, 张颖1,2, 程璇*1,2   

  1. 1. 厦门大学材料学院材料科学与工程系 厦门 361005;
    2. 福建省特种先进材料重点实验室 厦门 361005
  • 收稿日期:2014-02-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-08-12
  • 通讯作者: 程璇 E-mail:xcheng@xmu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 11372263)资助

Advances in Mechanically Enhanced Silica Aerogel Monoliths as Thermal Insulating Materials

Shao Zaidong1, Zhang Ying1,2, Cheng Xuan*1,2   

  1. 1. Department of Materials Science and Engineering, College of Materials, Xiamen University, Xiamen 361005, China;
    2. Fujian Key Laboratory of Advanced Materials, Xiamen 361005, China
  • Received:2014-02-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-08-12
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 11372263

作为一种轻质和超高孔隙率的三维纳米多孔材料,二氧化硅气凝胶具有极低的常温导热系数,成为理想的纳米多孔超级隔热材料。然而,二氧化硅气凝胶的力学性能很差,且常压干燥制备的气凝胶整体性较差,这些都极大地限制了二氧化硅气凝胶的实际应用。近年来,通过复合或交联的方法制备得到的新型二氧化硅气凝胶,在一定程度上提高了其整体性、强度和柔韧性,使得二氧化硅气凝胶作为单独的块体材料应用成为可能。本文简要介绍二氧化硅气凝胶的多孔结构、基本性质和隔热原理,并对纤维增强、聚合物交联和其他复合二氧化硅气凝胶作为块体隔热材料的研究现状进行重点综述。最后,总结了该领域存在的关键问题,并提出未来的研究方向。

As a three-dimensional nanoporous material with low density and high porosity, silica aerogel exhibits a low thermal conductivity at room temperature and becomes an ideal nanoporous super thermal insulating material. However, the poor mechanic property and fragment occurred during ambient pressure drying have greatly limited the practical applications of silica aerogel. The apparent enhancements in integrity, strength and flexibility are achieved with the new-type of silica aerogels prepared by compositing or crosslinking, which makes it possible to be applied alone in the form of monolith as thermal insulating materials. In this paper, the porous structures, basic properties and thermal insulation principles of silica aerogels are briefly introduced. The research progress of newly developed fiber reinforced composite silica aerogels, polymer crosslinked silica aerogels, and the other combined silica aerogels as monolithic thermal insulation materials are focused. Finally, the key problems in the field of silica aerogels are summarized and the future research trends are highlighted.

Contents
1 Introduction
2 Basic properties of silica aerogels
3 Principles of thermal insulation of silica aerogel
4 Silica aerogels as thermal insulating materials
5 New-type silica aerogels as thermal insulating materials
5.1 Fiber reinforced composite silica aerogels
5.2 Polymer crosslinked silica aerogels
5.3 Combined silica aerogels
6 Conclusion and outlook

中图分类号: 

()

[1] Schmidt M, Schwertfeger F. J. Non-Cryst. Solids, 1998, 225 (1/3): 364.
[2] Akimov Y K. Instruments and Experimental Techniques, 2003, 46 (3): 287.
[3] Pajonk G M. Colloid Polym. Sci., 2003, 281 (7): 637.
[4] Hüsing N, Schubert U. Angew. Chem. Int. Ed., 1998, 37 (1/2): 22.
[5] Koebel M, Rigacco A, Achard P. J. Sol-Gel. Sci. Technol., 2012, 63: 315.
[6] 吴国友(Wu G Y), 程璇(Cheng X), 余煜玺(Yu Y X), 张颖(Zhang Y). 化学进展(Progress in Chemistry), 2010, 22(10): 1892.
[7] Wu G Y, Yu Y, Cheng X, Zhang Y. Mater. Chem. Phys., 2011, 129: 308.
[8] Capadona L A, Meador M A B, Alunni A, Fabrizio E F, Vassilaras P, Leventis N. Polymer, 2006, 47 (16): 5754.
[9] Shao Z D, Luo F, Cheng X, Zhang Y. Mater. Chem. Phys., 2013, 141: 570.
[10] Venkateswara Rao A, Bhagat S D, Hirashima H, Pajonk G M J. Colloid Interface Sci., 2006, 300: 279.
[11] Kanamori K, Aizawa M, Nakanishi K, Hanada T. Adv. Mater., 2007, 19: 1589.
[12] Aravind P D, Soraru G D. J. Porous Mater., 2011, 18: 159.
[13] Bhagat S D, Oh C S, Kim Y H, Ahn Y S, Yeo J G. Micropor. Mesopor. Mater., 2007, 100: 350.
[14] Venkateswara Rao A, Kulkarni M M, Amalnerkar D P, Seth T. J. Non-Cryst. Solids, 2003, 330: 187.
[15] Nadargi D Y, Latthe S S, Hirashima H, Venkateswara Rao A. Micropor. Mesopor. Mater., 2009, 117: 617.
[16] Wang Z, Dai Z, Wu J, Zhao N, Xu J. Adv. Mater., 2013, 25: 4494.
[17] Kim C Y, Lee J K, Kim B I. Colloids Surf. A, 2008, 313/314: 179.
[18] 王珏(Wang J), 沈军(Shen J), Fricke J. 材料研究学报(Chinese Journal of Materials Research), 1995, 9 (6): 568.
[19] 董志军(Dong Z J), 李轩科(Li X K), 袁观明(Yuan G M). 化工新型材料(New Chemical Materials), 2006, 34 (7): 58.
[20] 杨海龙(Yang H L), 倪文(Ni W), 梁涛(Liang T), 徐国强(Xu G Q), 徐丽(Xu L). 材料工程(Materials Engineer), 2007, (7): 63.
[21] 高庆福(Gao Q F), 冯坚(Feng J), 张长瑞(Zhang C R), 冯军宗(Feng J Z), 武纬(Wu W), 姜勇刚(Jiang Y G). 硅酸盐学报(Journal of the Chinese Ceramic Society), 2009, 37 (1): 1.
[22] Yang X G, Sun Y T, Shi D Q, Liu J L. Mater. Sci. Eng. A, 2011, 528: 4830.
[23] Meador M A B, Vivod S L, McCorkle L, Quade D, Sullivan R M, Ghosn L J, Clark N, Capadona L A. J. Mater. Chem., 2008, 18: 1843.
[24] Boday D J, Muriithi B, Stover R J, Loy D A. J. Non-Cryst. Solids, 2012, 358: 1575.
[25] Frank D, Kessler B, Zimmermann A. US 5866027, 1992.
[26] Aegerter M A, Leventis N, Koebel M M. Aerogel Handbook. New York, 2011. 655.
[27] Karout A, Buisson P, Perrard A, Pierre A C. J. Sol-Gel. Sci. Technol., 2005, 36: 163.
[28] Chandradass J, Kang S, Bae D S. J. Non-Cryst. Solids, 2008, 354: 4115.
[29] 冯坚(Feng J), 冯军宗(Feng J Z), 姜勇刚(Jiang Y G). 宇航材料工艺(Aerospace Materials & Technology), 2012, 2: 42.
[30] 王虹(Wang H), 倪星元(Ni X Y), 汤人望(Tang R W), 李洋(Li Y), 李荣年(Li R N), 王际超(Wang J C), 沈军(Shen J), 产业用纺织品(Technical Textiles), 2009, 11: 9.
[31] Paik J A, Sakamoto J, Jones S. Improved Silica Aerogel Composite Materials, (2008-09-01).[2014-01-01] http://www. techbriefs.com/component/content/article/3125.
[32] Cai J, Liu S, Feng J, Kimura S, Wada M, Kuga S, Zhang L. Angew. Chem., 2012, 124 (9): 2118.
[33] Tong L, Lou J, Gattass R R, He S, Chen X, Liu L, Mazur E. Nano Lett., 2005, 5 (2): 259.
[34] 刘开平(Liu K P), 梁庆宣(Liang Q X). CN 1803602, 2005.
[35] Li L, Yalcin B, Nguyen B N, Meador M A B, Cakmak M. ACS. Appl. Mater. Interf., 2009, 1: 2491.
[36] Wei T Y, Lu S Y, Chang Y C. J. Phys. Chem. C, 2009, 113: 7424.
[37] Katti A, Shimpi N, Roy S, Lu H, Fabrizio E F, Dass A, Capadona L A, Leventis N. Chem. Mater., 2005, 18 (2): 285.
[38] Meador M A B, Capadona L A, McCorkle L, Papadopoulos D S, Leventis N. Chem. Mater., 2007, 19 (9): 2247.
[39] Ilhan F, Fabrizio E F, McCorkle L, Scheiman D A, Dass A, Palczer A, Meador M B, Johnston J C, Leventis N. J. Mater. Chem., 2006, 16: 3046.
[40] Meador M A B, Fabrizio E F, Ilhan F, Dass A, Zhang G, Vassilaras P, Johnston J C, Leventis N. Chem. Mater., 2005, 17 (5): 1085.
[41] Shajesh P, Smitha S, Aravind P R, Warrier K G K. J. Colloid Interface Sci., 2009, 336 (2): 691.
[42] Shao Z D, Wu G Y, Cheng X, Zhang Y. J. Non-Cryst. Solids, 2012, 358 (18/19): 2612.
[43] Sabri F, Leventis N, Hoskins J, Schuerger A C, Sinden-Redding M, Britt D, Duran R A. Adv. Space Res., 2011, 47: 419.
[44] Mulik S, Sotiriou-Leventis C, Churu G, Lu H, Leventis N. Chem. Mater., 2008, 20 (15): 5035.
[45] Meador M A B, Scherzer C M, Vivod S L, Quade D, Nguyen B N. ACS. Appl. Mater. Interf., 2010, 2 (7): 2162.
[46] Yang H L, Kong X M, Zhang Y R, Wu C C, Cao E X. J. Non-Cryst. Solids, 2011, 357 (19/20): 3447.
[47] Tamaki R, Choi J, Laine R M. Chem. Mater., 2003, 15 (3): 793.
[48] Randall J P, Meador M A B, Jana S C. J. Mater. Chem. A, 2013, 1: 6642.
[49] Leventis N. Acc. Chem. Res., 2007, 40: 874.
[50] Xu Y Z, Sui Z Y, Xu B, Duan H, Zhang X T. J. Mater. Sci., 2012, 22 (17): 8579.
[51] Sadekar A G, Mahadik S S, Bang A N, Larimore Z J, Wisner C A, Bertino M F, Kalkan A K, Mang J T, Sotiriou-Leventis C, Leventis N. Chem. Mater., 2011, 24 (1): 26.
[52] Lee J K, Gould G L, Rhine W. J. Sol-Gel. Sci. Technol., 2009, 49 (2): 209.
[53] Leventis N, Sotiriou-Leventis C, Mohite D P, Larimore Z J, Mang J T, Churu G, Lu H. Chem. Mater., 2011, 23 (8): 2250.
[54] Meador M A B, Malow E J, Silva R, Wright S, Quade D, Vivod S L, Guo H, Guo J, Cakmak M. ACS. Appl. Mater. Interf., 2012, 4 (2): 536.
[55] Rhine W, Wang J, Begag R. US 7074880, 2006.
[56] Guo H, Meador M A B, McCorkle L, Quade D J, Guo J, Hamilton B, Cakmak M, Sprowl G. ACS. Appl. Mater. Interf., 2011, 3 (2): 546.
[57] Nguyen B N, Meador M A B, Medoro A, Arendt V, Randall J, McCorkle L, Shonkwiler B. ACS. Appl. Mater. Interf., 2010, 2 (5): 1430.

[1] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[2] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[3] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[4] 唐森林, 高欢, 彭颖, 李明光, 陈润锋, 黄维. 钙钛矿光伏电池的非辐射复合损耗及调控策略[J]. 化学进展, 2022, 34(8): 1706-1722.
[5] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[6] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[7] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[8] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[9] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 孙华悦, 向宪昕, 颜廷义, 曲丽君, 张光耀, 张学记. 基于智能纤维和纺织品的可穿戴生物传感器[J]. 化学进展, 2022, 34(12): 2604-2618.
[12] 陈雅琼, 宋洪东, 吴懋, 陆扬, 管骁. 蛋白质-多糖复合体系在活性物质传递中的应用[J]. 化学进展, 2022, 34(10): 2267-2282.
[13] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[14] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[15] 祝梓琳, 范中贤, 缪梦昭, 黄怀义. 铱(Ⅲ)配合物乏氧肿瘤光动力治疗[J]. 化学进展, 2021, 33(9): 1473-1481.