English
新闻公告
More
化学进展 2014, Vol. 26 Issue (08): 1352-1360 DOI: 10.7536/PC140212 前一篇   后一篇

• 综述与评论 •

复合介孔二氧化硅膜的制备及应用

卞书娟, 吴宏庆, 江旭恒, 龙亚峰, 陈勇*   

  1. 上海应用技术学院化学与环境工程学院 上海 201418
  • 收稿日期:2014-02-01 修回日期:2014-04-01 出版日期:2014-08-15 发布日期:2014-06-10
  • 通讯作者: 陈勇 E-mail:yongchen@sit.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21005049)和教育部归国留学人员基金项目(No. ZX2008-04)资助

Syntheses and Applications of Hybrid Mesoporous Silica Membranes

Bian Shujuan, Wu Hongqing, Jiang Xuheng, Long Yafeng, Chen Yong*   

  1. School of Chemical and Environmental Engineering, Shanghai Institute of Technology, Shanghai 201418, China
  • Received:2014-02-01 Revised:2014-04-01 Online:2014-08-15 Published:2014-06-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 21005049) and the Scientific Research Foundation for the Returned Overseas Chinese Scholars, State Education Ministry(No. ZX2008-04)

复合介孔二氧化硅膜是近十年来发展起来的一种具有独特孔中孔结构的新型膜材料。该材料以多孔膜(无机多孔膜或者有机多孔膜)为硬模板,以表面活性剂为结构导向剂,通过溶胶-凝胶等方法将介孔二氧化硅材料组装在多孔膜的孔道中制备而成。由于其具有不同于传统介孔二氧化硅膜材料的一些独特结构和性能,并在分离、吸附和催化等领域具有广泛的应用前景,引起了人们广泛的关注。本文主要就复合介孔二氧化硅膜的制备方法,特别是近几年内其在纳滤、纳米材料的模板合成、酶的固定、传感器、反应器以及药物释放等方面最新的应用研究进展进行论述,同时对这类新型的复合介孔二氧化硅膜材料在合成和应用方面存在的问题进行了分析和总结,并对其发展前景作了展望。

Hybrid mesoporous silica membranes, in short HMSMs, are a kind of novel membrane materials with unique structure of pores-in-pores synthesized by sol-gel, evaporation-induced self-assembly, aspiration-induced infiltration, counter diffusion self-assembly, vapor-phase synthesis and microwave-assisted synthesis methods. Such hybrid mesoporous silica membranes are composed of mesoporous silica materials inside the confined channels of porous membranes including organic porous membranes and inorganic porous membranes employed as the hard templates. In addition, various surfactants are used as the structure directing agents (SDA). Due to the different structure of HMSMs with pores-in-pores from those conventional mesoporous silica membranes and their attractively potential applications in the membrane-based adsorption, filtration and catalysis etc., those hybrid mesoporous silica membranes have attracted great attention during the past decade. This review focuses on the recent developments of this kind of novel hybrid membranes including the synthesis methods and the applications in the membrane-based nanofiltration, templated-syntheses of nanomaterials, enzyme immobilization, artificial biomembrane, sensor, reactor and drug delivery etc. Additionally, some problems found in the syntheses and the applications of such hybrid mesoporous silica membranes are analyzed and concluded in this review. Moreover, the development prospect of this kind of hybrid mesoporous silica membranes is discussed.

Contents
1 Introduction
2 Syntheses of hybrid mesoporous silica membrane
2.1 Sol-gel method
2.2 Evaporation-induced self-assembly method
2.3 Aspiration-induced infiltration method
2.4 Counter diffusion self-assembly method
2.5 Vapor-phase synthesis method
2.6 Microwave-assisted synthesis method
3 Applications of hybrid mesoporous silica membranes
3.1 Membrane-based nanofiltration
3.2 Templated-syntheses of nanomaterials
3.3 Enzyme immobilization, artificial biomembrane, sensor and drug delivery
3.4 Catalysis and membrane reactor
4 Conclusion and outlook

中图分类号: 

()

[1] 张学骜(Zhang X A),刘长利(Liu C L),钱斯文(Xian S W),吴晓森(Wu X S),王建方(Wang J F),吴文健(Wu W J).化学进展(Progress in Chemistry), 2006, 18(10): 1322.
[2] 张倩(Zhang Q),单锋(Shan F),陆学民(Lu X M),路庆华(Lu Q H).化学进展(Progress in Chemistry), 2012, 24(4): 492.
[3] Yang Z L, Niu Z W, Cao X Y, Yang Z Z, Lu Y F, Hu Z B, Han C C. Angew. Chem. Int. Ed., 2003, 42: 4201.
[4] Wu Y Y, Cheng G S, Katsov K, Sides S W, Wang J F, Tang J, Fredrickson G H, Moskovits M, Stucky G D. Nat. Mater., 2004, 3: 816.
[5] 龚志红(Gong Z H),姬广斌(Ji G B),郑明波(Zheng M B), 高婷婷(Gao T T).材料导报(Materials Review),2010, 24(6): 32.
[6] Ji G B, Gong Z H, Liu Y S, Chang X F, Du Y W, Qamar M. Solid State Commun., 2011, 151: 1151.
[7] Platschek B, Petkov N, Himsl D, Zimdars S, Li Z, Köhn R, Bein T. J. Am. Chem. Soc., 2008, 130: 17362.
[8] Platschek B, Keilbach A, Bein T. Adv. Mater., 2011, 23: 2395.
[9] Keilbach A, Moses J, Köhn R, Döblinger M, Bein T. Chem. Mater., 2010, 22: 5430.
[10] Petkov N, Platschek B, Morris M A, Holmes J D, Bein T. Chem. Mater., 2007, 19: 1376.
[11] Cauda V, Torre B, Falqui A, Canavese G, Stassi S, Bein T, Pizzi M. Chem. Mater., 2012, 24: 4215.
[12] Yamaguchi A, Uejo F, Yoda T, Uchida T, Tanamura Y, Yamashita Y, Teramae N. Nat. Mater., 2004, 3: 337.
[13] Itoh T, Ishii R, Hanaoka T, Hasegawa Y, Mizuguchi J, Shiomi T, Shimomura T, Yamaguchi A, Kaneda H, Teramae N, Mizukami F. J. Mol. Catal. B: Enzym., 2009, 57(1/4): 183.
[14] Fu W S, Yamaguchi A, Kaneda H, Teramae N. Chem. Commun., 2008, 853.
[15] El-Safty S A, Mekawy M, Yamaguchi A, Shahat A, Ogawa K, Teramae N. Chem. Commun., 2010, 46: 3917.
[16] Yamaguchi A, Teramae N. Anal. Sci., 2008, 24: 25.
[17] Liang Z J, Susha A S. Chem. Eur. J., 2004, 10: 4910.
[18] 朱瑾瑜(Zhu J Y), 沈逸 (Shen Y),吴龙(Wu L), 甘思文(Gan S W), 陈安琪(Chen A Q),沈祝萍(Shen Z P),潘小庆(Pan X Q),陈勇(Chen Y).化学学报(Acta Chimica Sinica), 2010, 68(21): 2231.
[19] Suzuki N, Yamauchi Y. J. Nanomater., 2010, 2010: 1.
[20] Zhang A F, Hou K K, Gu L, Dai C Y, Liu M, Song C S, Guo X W. Chem. Mater., 2012, 24: 1005.
[21] Chen Y, Wu L, Zhu J Y, Shen Y, Gan S W, Chen A Q. J. Porous. Mater., 2011, 18: 251.
[22] Chen Y, Wu H Q, Gan S W, Wang Y H, Sun X L. J. Membr. Sci., 2012, 403/404: 94.
[23] Bian S J, Gao K, Shen H J, Jiang X H, Long Y F, Chen Y. J. Mater. Chem. B, 2013, 1: 3267.
[24] Tan W M, Huang N, Wang L J, Song T S, Lu C H, Wang L F, Zhang J Z. J. Solid State Chem., 2013, 201: 13.
[25] Lai P, Hu M Z, Shi D L, Blom D. Chem. Commun., 2008, 1338.
[26] Keller A, Kirmayer S, Segal-Peretz T, Frey G L. Langmuir, 2012, 28: 1506.
[27] Yamauchi Y, Suzuki N, Kimura T. Chem. Commun., 2009, 5689.
[28] Suzuki N, Kimura T, Yamauchi Y. J. Mater. Chem., 2010, 20: 5294.
[29] Yamaguchi A, Kaneda H, Fu W S, Teramae N. Adv. Mater., 2008, 20: 1034.
[30] Alsyouri H M, Li D, Lin Y S, Ye Z, Zhu S P. J. Membr. Sci., 2006, 282: 266.
[31] Seshadri S K, Alsyouri H M, Lin Y S. Micropor. Mesopor. Mater., 2010, 129 : 228.
[32] Lee K J, Min S H, Jang Y. Small, 2008, 4(11): 1945.
[33] Guo L M, Fan Y, Teramae N. New J. Chem., 2012, 36: 1301.
[34] Guo L M, Fan Y, Arafune H, Teramae N. Micropor. Mesopor. Mater., 2012, 162: 122.
[35] Min S H, Bae J, Jang J, Lee K J. Nanotechnology, 2013, 24: 255602.
[36] Yao B, Fleming D, Morris M A, Lawrence S E. Chem. Mater., 2004, 16: 4851.
[37] Jin K W, Yao B, Wang N. Chem. Phys. Lett., 2005, 409: 172.
[38] Yoo S, Ford D M, Shantz D F. Langmuir, 2006, 22: 1839.
[39] Platschek B, Köhn R, Döblinger M, Bein T. ChemPhysChem, 2008, 9: 2059.
[40] Chen Y, Bian S J, Gao K, Cao Y Y, Wu H Q, Liu C X, Jiang X H, Sun X L. J. Membr. Sci., 2014, 457: 9.
[41] El-Safty S, Shahat A, Awual M R, Mekawy M. J. Mater. Chem., 2011, 21: 5593.
[42] Lu S, An Z, He J, Li B. J. Mater. Chem., 2012, 22: 3882.
[43] Hua D R, Li P P, Wu Y L, Chen Y, Yang M D, Dang J, Xie Q H, Liu J, Sun X Y. J. Ind. Eng. Chem., 2013, 19: 1395.
[44] Yang S H, Ko E H, Choi I S. Macromol. Res., 2011, 19(5): 511.
[45] Osei-Prempeh G, Lehmler H, Rankin S E, Knutson B L. Ind. Eng. Chem. Res., 2011, 50: 5510.
[46] Calvo A, Joselevich M, Soler-Illia G J, Williams F J. Micropor. Mesopor. Mater., 2009, 121: 67.
[47] Krohm F, Didzoleit H, Schulze M, Dietz C, Stark R W, Hess C, Stühn B, Brunsen A. Langmuir, 2014, 30: 369.
[48] Choi Y, Kim Y, Kim H K, Lee J S. J. Membr. Sci., 2010, 357: 199.
[49] Innocenzi P, Malfatti L. Chem. Soc. Rev., 2013, 42: 4198.
[50] Gargiulo N, Santo I D, Causa F, Caputo D, Netti P A. Micropor. Mesopor. Mater., 2013,167 : 71.
[51] Martin C R, Siwy Z. Nat. Mater., 2004, 3: 284.
[52] Mekawy M M, Yamaguchi A, El-Safty S A, Itoh T, Teramae N. J. Colloid Interface Sci., 2011, 355: 348.
[53] El-Safty S A, Hoa N D, Shenashen M A. Eur. J. Inorg. Chem., 2012, 5439.
[54] Chen Y, Yamaguchi A, Atou T, Morita K, Teramae N. Chem. Lett., 2006, 35(12): 1352.
[55] Chae W S, Kim E M, Yu H, Jeon S, Jung J S. J. Nanosci. Nanotechnol., 2012, 12(4): 3501.
[56] Mekawy M M. Res. Chem. Intermed., 2011, 37: 719.
[57] Itoh T, Shimomura T, Hasegawa Y, Mizuguchi J, Hanaoka T, Hayashi A, Yamaguchi A, Teramae N, Ono M, Mizukami F. J. Mater. Chem., 2011, 21: 251.
[58] Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Sens. Actuators B, 2008,135: 268.
[59] Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Talanta, 2009, 78: 217.
[60] Shimomura T, Itoh T, Sumiya T, Mizukami F, Ono M. Enzyme Microb. Technol., 2009, 45: 443.
[61] Chen X T, Yamaguchi A, Namekawa M, Kamijo T, Teramae N, Tong A J. Anal. Chim. Acta, 2011, 696: 94.
[62] Cauda V, Onida B, Platschek B, Mühlstein L, Bein T. J. Mater. Chem., 2008, 18: 5888.
[63] Cauda V, Mühlstein L, Onida B, Bein T. Micropor. Mesopor. Mater., 2009, 118: 435.
[64] Lee K J, Min S H, Jang J. Chem. Eur. J., 2009, 15: 2491.
[65] Wang X C, Liu J, Zhang S J, Chimin D. Synth. Met., 2012, 162: 1459.
[66] Yamauchi Y, Kimura T. Chem. Commun., 2013, 49: 11424.
[67] Huang L, Chen Y, Bian S J, Huang Y F, Tian Z Q, Zhan D P. Chem. Eur. J., 2014, 20: 724.

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[6] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[7] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[8] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[9] 张旭, 张蕾, 黄善恩, 柴之芳, 石伟群. 盐包合材料在高温熔盐体系中的合成及其潜在应用[J]. 化学进展, 2022, 34(9): 1947-1956.
[10] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[11] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[12] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[13] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[14] 彭帅伟, 汤卓夫, 雷冰, 冯志远, 郭宏磊, 孟国哲. 仿生定向液体输送的功能材料表面设计与应用[J]. 化学进展, 2022, 34(6): 1321-1336.
[15] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.