English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1255-1264 DOI: 10.7536/PC140203 前一篇   后一篇

• 综述与评论 •

染料敏化太阳能电池掺杂TiO2纳晶光阳极

王桂强1, 段彦栋2, 张娟1, 林原2, 禚淑萍*1   

  1. 1. 山东理工大学化工学院 淄博 255049;
    2. 中国科学院化学研究所 北京 100190
  • 收稿日期:2014-02-01 修回日期:2014-03-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 禚淑萍 E-mail:zhuosp@sdut.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.21273137)和山东省自然科学基金项目(No.ZR2010BM038)资助

Doped Titania Nanocrystalline Photoanodes for Efficiency Improvement of Dye-Sensitized Solar Cells

Wang Guiqiang1, Duan Yandong2, Zhang Juan1, Lin Yuan2, Zhuo Shuping*1   

  1. 1. School of Chemical Engineering, Shandong University of Technology, Zibo 255049, China;
    2. Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2014-02-01 Revised:2014-03-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21273137 ) and the Natural Science Foundation of Shandong Province (No.ZR2010BM038)

染料敏化太阳能电池(dye-sensitized solar cells, DSC)效率高、制作简单、成本低,因此被认为是最有希望的第三代太阳能电池。DSC光阳极的主要作用是吸附染料、传输电子和提供电解质扩散通道,因此对DSC光电性能具有决定性作用。近年来,通过掺杂调控TiO2光阳极的电子特性,从而提高DSC的光电效率受到广泛关注。本文对掺杂TiO2光阳极的研究现状进行了综述,重点分析了非金属元素、过渡金属元素及主族元素的掺杂对TiO2光阳极的能带结构、光吸收特性、染料吸附量、电子传输和界面复合过程以及所组装DSC光电性能的影响,分析了非金属元素共掺杂的协同效应。同时,对稀土元素掺杂TiO2作为光谱转换材料提高DSC光吸收效率和光电转换效率进行了探讨,最后论文对掺杂TiO2光阳极今后的研究重点和研究方向进行了展望。

Dye-sensitized solar cells (DSC) play a leading role in the third generation photovoltaic devices due to their low cost, easy fabrication process, high conversion efficiency, and good stability. As a media of dye adsorption, electron transport, and electrolyte diffusion, the nanocrystalline semiconductor photoanode plays a key role during light-to-electricity conversion in DSC. Apparently, titania (TiO2) has been most frequently used as a photoanode materials in DSCs. Although other semiconductors such as ZnO, SnO2, and SrTiO3 etc. have also been widely applied in photoanode of DSC, none of them have shown better performance than TiO2. Up to now, a record efficiency of 12.3% for the DSC with TiO2 photoanode has been achieved. However, further improvement of the conversion efficiency of DSC is still a major issue for its application prospects. In recent years, doping TiO2 with metal and nonmetal elements has been considered as a promising way to tailor the electronic properties of TiO2 photoanode in DSC and has succeeded in improving photovoltaic performance of DSC. This article presents an overview on doped nanocrystalline TiO2, including non-metal doped TiO2, transition metal doped TiO2, rare earth doped TiO2, and main-group metal doped TiO2 employed as the photoanode for improving photovoltaic performance of DSC. The influence of foreign-elements doping on the band edge, the trap state distribution, the electron transport process, the recombination reaction, and the light harvesting of TiO2 photoanode are discussed. Lastly, an outlook on the future challenges and prospects of doped nanocrystalline TiO2 materials as the photoanode for DSC are also briefly brought up.

Contents
1 Introduction
2 Nonmetal-doped TiO2 photoanode of DSC
2.1 N-doped TiO2 photoanode of DSC
2.2 Halogen-doped TiO2 photoanode of DSC
2.3 B-doped TiO2 photoanode of DSC
2.4 Codoped TiO2 photoanode of DSC
3 Transition metal doped TiO2 photoanode of DSC
3.1 Zn-doped TiO2 photoanode of DSC
3.2 Cr-doped TiO2 photoanode of DSC
3.3 W-doped photoanode of DSC
3.4 Nb-doped photoanode of DSC
3.5 Ta-doped TiO2 photoanode of DSC
4 Rare earth doped TiO2 photoanode of DSC
5 Main-group metal doped TiO2 photoanode of DSC
6 Conclusion and outlook

中图分类号: 

()

[1] O'Regan B, Grätzel M. Nature, 1991, 353: 737.
[2] Grätzel M. J. Photochem. Photobio. C, 2003, 4: 145.
[3] Grätzel M. Inorg. Chem., 2005, 44: 6841.
[4] Grätzel M. Nature, 2001, 414: 338.
[5] O'Regan B, Durrant J. Acc. Chem. Res., 2009, 42: 1799.
[6] Vougioukalakis G, Philippopoulos A, Stergiopoulos T. Coord. Chem. Rev., 2011, 255: 2602.
[7] Hagfeldt A, Boschloo G, Sun L, Kloo L, Pettersson H. Chem. Rev., 2010, 110: 6595.
[8] Yum J, Chen P, Grätzel M, Nazeeruddin M K. ChemSusChem, 2008, 1: 699.
[9] Snaith H J, Schmidt-Mende L. Adv. Mater., 2007, 19: 3187.
[10] Yella A, Lee H, Tsao H, Yi C, Chandiran A K, Nazeeruddin M K, Diau E M, Zakeeruddin S M, Grätzel M. Science, 2011, 334: 629.
[11] Kojima A, Teshima K, Shirai Y, Miyasaka T. J. Am. Chem. Soc., 2009, 131: 6050.
[12] Peng H, Hu S, Zhang J, Lv S, Yu Y, Wei F, Qin T, Xu H, Liu Z, Cui L. Chem. Mater., 2014, 26: 1485.
[13] Burschka J, Pellet N, Moon S, Humphry-Baker R, Gao P, Nazeeruddin M K, Grätzel M. Nature, 2013, 499: 317.
[14] Wu W, Xu Y, Su C, Kuang D. Energy Environ. Sci., 2014, 7: 644.
[15] Liao J, Lei B, Cheng H, Kuang D, Su C. Energy Environ. Sci., 2012, 5: 5750.
[16] Liao J, Lei B, Kuang D, Su C. Energy Environ. Sci., 2011, 4: 4079.
[17] Xu C, Wu J, Desai U, Gao D. J. Am. Chem. Soc., 2011, 133: 8122.
[18] Yu X, Wang H, Liu Y, Zhou X, Li B, Xin L, Zhou Y, Shen H. J. Mater. Chem. A, 2013, 1: 2110.
[19] Ghadiri E, Taghavinia N, Zakeeruddin S M, Grätzel M, Moser J. Nano Lett., 2010, 10: 1632.
[20] Yang L, Leung W. Adv. Mater., 2011, 23: 4559.
[21] Jennings J R, Ghicov A, Peter L, Schmuki P, Walker A B. J. Am. Chem. Soc., 2008, 130: 13364.
[22] Chen Q, Xu D. J. Phys. Chem. C, 2009, 113: 6310.
[23] Lei B, Liao J, Zhang R, Wang J, Su C, Kuang D. J. Phys. Chem. C, 2010, 114: 15228.
[24] Kim J, Noh J, Zhu K, Halverson A F, Neale N R, Park S, Hong K, Frank A J. ACS Nano, 2011, 5: 2647.
[25] Huang Q, Zhou G, Fang L, Hu L, Wang Z. Energy Environ. Sci., 2011,4: 2145.
[26] Jiu J, Isoda S, Wang F, Adachi M. J. Phys. Chem. B, 2006, 110: 2087.
[27] Lv M, Zheng D, Ye M, Xiao J, Guo W, Lai Y, Sun L, Lin C, Zuo J. Energy Environ. Sci., 2013, 6: 1615.
[28] Sommeling P, O'regan B, Haswell R, Smit H, Baker N, Smits J, Kroon J, van Roosmalen J. J. Phys. Chem. B, 2006, 110: 19191.
[29] O'Regan B, Durrant J, Sommeling P, Baker N. J. Phys. Chem. C, 2007, 111: 14001.
[30] Barnes P, Anderson A, Koops S, Durrant J, O'Regan B. J. Phys. Chem. C, 2008, 112: 1126.
[31] Jung H, Lee J, Nastasi M, Lee S, Kim J, Park J, Hong K, Shin H. Langmuir, 2005, 21: 10332.
[32] Ganapathy V, Karunagaran B, Rhee S. J. Power Source, 2010, 195: 5138.
[33] Tien T, Pan F, Wang L, Tsai F, Lin C. J. Phys. Chem. C, 2010, 114: 10048.
[34] Palomares E, Clifford J, Haque S, Lutz T, Durrant J. Chem. Commun., 2002, 38: 1464.
[35] Kay A, Grätzel M. Chem. Mater., 2002, 14: 2930.
[36] Kim S, Yum J, Sung Y. Sol. Energy Mater. Sol. Cells, 2003, 79: 495.
[37] Chappel S, Chen S, Zaban A. Langmuir, 2002, 18: 3336.
[38] Wang Z, Yanagida S, Sayama K, Sugihara H. Chem. Mater., 2006, 18: 2912.
[39] Yum J, Nakade S, Kim D, Yanagida S. J. Phys. Chem. B, 2006, 110: 3215.
[40] Chen X, Mao S. Chem. Rev., 2007, 107: 2891.
[41] Zhang J, Zhao Z, Wang X, Yu T, Guang J, Yu Z, Li Z, Zou Z. J. Phys. Chem. C, 2010, 114: 18396.
[42] Hou Q, Zheng Y, Chen J, Zhou W, Deng J, Tao X. J. Mater. Chem., 2011, 21: 3877.
[43] Ihara T, Miyoshi M, Iriyama Y, Matsumoto O, Sugihara S. Appl. Catal. B: Environ., 2003, 42: 403.
[44] Irie H, Watanabe Y, Hashimoto K. J. Phys. Chem. B, 2003, 107: 5483.
[45] Mrowetz M, Belcerski W, Colussi A, Hoffmann M. J. Phys. Chem. B, 2004, 108: 17269.
[46] Mrowetz M, Balcerski W, Colussi A J, Hoffmann M R. J. Phys. Chem. B, 2004, 108: 17269.
[47] Ma T, Akiyama M, Abe E, Imai I. Nano Lett., 2005, 5: 2543.
[48] Guo W, Shen Y, Wu L, Guo Y, Ma T. J. Phys. Chem. C, 2011, 115: 21494.
[49] Guo W, Wu L, Chen Z, Boschloo G, Hagfeldt A, Ma T. J. Photochem. Photobio. A: Chem., 2011, 219: 180.
[50] Guo W, Shen Y, Bochloo G, Hegfeldt A, Ma T. Electrochim. Acta, 2011, 56: 4611.
[51] Melhem H, Simon P, Wang J, di Bin C, Ratier B, Leconte Y, Herlin-Boime N, Makowska-Janusik M, Kassiba A, Boucle J. Sol. Energy Mater. Sol. Cells, 2013, 117: 624.
[52] Shu T, Xiang P, Zhou Z, Wang H, Liu G, Han H, Zhao Y. Electrochim. Acta, 2012, 68: 166.
[53] Xie Y, Huang N, Liu Y, Sun W, Mehnane H, You S, Wang L, Liu W, Guo S, Zhao X. Electrochim. Acta, 2013, 93: 202.
[54] Kang S, Kim H, Kim J, Sung Y. Mater. Chem. Phys., 2010, 124: 422.
[55] Tian H, Hu L, Zhang C, Liu W, Huang Y, Mo L, Guo L, Sheng J, Dai S. J. Phys. Chem. C, 2010, 114: 1627.
[56] Shannon R D. Acta Cryst. A, 1976, 32: 751.
[57] Giannakopoulou T, Todorova N, Trapalis C, Vaimakis T. Mater. Lett., 2007, 61: 4474.
[58] Todorova N, Giannakopoulou T, Vaimakis T, Trapalis C. Mater. Sci. Energy B, 2008, 152: 50.
[59] Neo C, Ouyang J. J. Power Source, 2013, 241: 647.
[60] Song J, Yang H, Wang X, Khoo S, Wong C, Liu X, Li C. ACS Appl. Mater. Interfaces, 2012, 4: 3712.
[61] Liu G, Sun C, Yan X, Cheng L, Chen Z, Wang X, Wang L, Smith S, Lu G, Cheng H. J. Mater. Chem., 2009, 19: 2822.
[62] Usseglio S, Calza P, Damin A, Minero C, Bordiga S, Lamberti C, Pelizzetti E, Zecchina A. Chem. Mater., 2006, 18: 3412.
[63] Usseglio S, Damin A, Scarano D, Bordiga S, Zecchina A, Lamberti A. J. Am. Chem. Soc., 2007, 129: 2822.
[64] Yang K, Dai Y, Huang B, Whangbo M. Chem. Mater., 2008, 20: 6528.
[65] Tojo S, Tachikawa T, Fujitsuka M, Majima T. J. Phys. Chem. C, 2008, 112: 14948.
[66] Hou Q, Zheng Y Z, Chen J F, Zhuo W L, Deng J, Tao X. J. Mater. Chem., 2011, 21: 3877.
[67] Tian H, Hu L, Zhang C, Chen S, Sheng J, Mo L, Liu W, Dai S. J. Mater. Chem., 2011, 21: 863.
[68] Subramanian A, Wang H. Appl. Surf. Sci., 2012, 258: 6479.
[69] Liu S, Yu J, Wang W. Phys. Chem. Chem. Phys., 2010, 12: 12308.
[70] Tian H, Hu L, Zhang C, Mo L, Li W, Sheng J, Dai S. J. Mater. Chem., 2012, 22: 9123.
[71] Tian H, Hu L, Li W, Sheng J, Xu S, Dai S. J. Mater. Chem., 2011, 21: 7074.
[72] Yang S, Xue H, Wang H, Kou H, Wang J, Zhu G. J. Phys. Chem. Solids, 2012, 73: 911.
[73] Li Y, Jia L, Wu C, Han S, Gong Y, Chi B, Jian L. J. Alloy Comp., 2012, 512: 23.
[74] Devi L, Kottam N, Murthy B, Kumar S. J. Mol. Catal. A: Chem., 2010, 328: 44.
[75] Wang K, Teng H. Phys. Chem. Chem. Phys., 2009, 11: 9489.
[76] Zhang Y, Wang L, Liu B, Zhai J, Fan H, Wang D, Lin Y, Xie T. Electrochim. Acta, 2011, 56: 6517.
[77] Huang F, Li Q, Thorogood G, Cheng Y, Caruso R. J. Mater. Chem., 2012, 22: 17128.
[78] Moseley P, Williams D. Sens. Actuators B, 1990, 1: 113.
[79] Li Y, Wlodarski W, Galatsis K, Moslih S, Cole J, Russo S, Rockelmann N. Sens. Actuators A, 2002, 83: 160.
[80] Ruiz A, Sakai G, Cornet A, Shimanoe K, Morante J, Yamazoe N. Sens. Actuators B, 2003, 93: 509.
[81] Kim C, Kim K, Kim H, Han Y. J. Mater. Chem., 2008, 18: 5809.
[82] Xie Y, Huang N, You S, Liu Y, Sebo B, Liang L, Fang X, Liu W, Guo S, Zhao X. J. Power Source, 2013, 224: 168.
[83] Ko K, Lee Y, Jung Y. J. Colloid. Interface Sci., 2005, 283: 482.
[84] Zhang X, Liu F, Huang Q, Zhou G, Wang Z. J. Phys. Chem. C, 2011, 115: 12665.
[85] Furubayashi Y, Hitosugi T, Yamamoto Y, Inaba K, Kinoda G, Hirose Y, Shimada T, Hasegawa T. Appl. Phys. Lett., 2005, 86: 252101.
[86] Emeline A, Furubayashi Y, Zhang X, Jin M, Murakami T, Fujishima A. J. Phys. Chem. B, 2005, 109: 24441.
[87] Lee S, Noh J, Han Y, Yim D, Kim D, Lee J, Kim J, Jung H, Hong K. J. Phys. Chem. C, 2009, 113: 6878.
[88] Lu X, Mou X, Wu J, Zhang D, Zhang L, Huang F, Xu F, Huang S. Adv. Funct. Mater., 2010, 20: 509.
[89] Chandiran A, Sauvage F, Casas-Cabanas M, Comte P, Zakeeruddin S M, Grätzel M. J. Phys. Chem. C, 2010, 114: 15849.
[90] Yang M, Kim D, Jha H, Lee K, Paul J, Schmuki P. Chem. Commun., 2011, 47: 2032.
[91] Nikolay T, Larina L, Shevaleevskiy O, Ahn B. Energy Environ. Sci., 2011, 4: 1480.
[92] Nikolay T, Larina L, Shevaleevskiy O, Al-Ammar W, Ahn B. Prog. Photovolt: Res. Appl., 2012, 20: 904.
[93] Yang M, Ding B, Lee J. J. Power Source, 2014, 245: 301.
[94] Feng X, Shankar K, Maggie P, Grimes C A. Angew. Chem. Int. Ed., 2009, 48: 8095.
[95] Liu J, Yang H, Tang W, Zhou X, Lin Y. Electrochim. Acta, 2010, 56: 390.
[96] Ghosh R, Hara Y, Alibabaei L, Hanson K, Rangan S, Bartynski R, Meyer T J, Lopez R. ACS Appl. Mater. Interfaces, 2012, 4: 4566.
[97] Lee K, Schmuki P. Electrochem. Commun., 2012, 25: 11.
[98] Shalav A, Richards B S, Green M A. Sol. Energy Mater. Sol. Cells, 2007, 91: 829.
[99] Shalav A, Richards B S, Trupke T, Krämer K, Güdel H. Appl. Phys. Lett., 2005, 86: 013505.
[100] Richards B S. Sol. Energy Mater. Sol. Cells, 2006, 90: 1189.
[101] Zhang J, Zhao Z, Wang X, Yu T, Guan J, Yu Z, Li Z, Zou Z. J. Phys. Chem. C, 2010, 114: 18396.
[102] Zhang J, Peng W, Chen Z, Chen H, Han L. J. Phys. Chem. C, 2012, 116: 19182.
[103] Shan G, Demopoulos G P. Adv. Mater., 2010, 22: 4373.
[104] Wu X, Lu G, Wang L. Adv. Energy Mater., 2013, 3: 704.
[105] Yu J, Yang Y, Fan R, Zhang H, Li L, Wei L, Shi Y, Pan K, Fu H. J. Power Source, 2013, 243: 436.
[106] Hafez H, Saif M, Abdel-Mottaleb M. J. Power Source, 2011, 196: 5792.
[107] Strümpel C, McCann M, Beaucarne G, Arkhipov V, Slaoui A, vrcek V, Canizo C, Tobias I. Sol. Energy Mater. Sol. Cells, 2007, 91: 238.
[108] Van de Ende B M, Aarts L, Meijerink A. Phys. Chem. Chem. Phys., 2009, 11: 11081.
[109] Iwamoto S, Sazanami Y, Inoue M, Inoue T, Hoshi T, Shigaki K, Koneko M, Maenosono A. ChemSusChem, 2008, 1: 401.
[110] Zhang C, Chen S, Mo L, Huang Y, Tian H, Hu L, Huo Z, Dai S, Kong F, Pan X. J. Phys. Chem. C, 2011, 115: 16418.
[111] Liu Q, Zhou Y, Duan Y, Wang M, Zhao X, Lin Y. Electrochim. Acta, 2013, 548: 161.
[112] Wang M, Bai S, Chen A, Duan Y, Liu Q, Li D, Lin Y. Electrochim. Acta, 2012, 77: 54.
[113] Duan Y, Fu N, Liu Q, Fang Y, Zhou X, Zhang J, Lin Y. J. Phys. Chem. C, 2012, 116: 8888.
[114] Duan Y, Fu N, Zhang Q, Fang Y, Zhou X, Lin Y. Electrochim. Acta, 2013, 107: 473.

[1] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[2] 李婧婧, 李洪基, 黄强, 陈哲. 掺杂对钠离子电池正极材料性能影响机制的研究[J]. 化学进展, 2022, 34(4): 857-869.
[3] 孟鹏飞, 张笑容, 廖世军, 邓怡杰. 金属/非金属元素掺杂提升原子级分散碳基催化剂的氧还原性能[J]. 化学进展, 2022, 34(10): 2190-2201.
[4] 卢赟, 史宏娟, 苏岳锋, 赵双义, 陈来, 吴锋. 元素掺杂碳基材料在锂硫电池中的应用[J]. 化学进展, 2021, 33(9): 1598-1613.
[5] 陈阳, 崔晓莉. 锂离子电池二氧化钛负极材料[J]. 化学进展, 2021, 33(8): 1249-1269.
[6] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[7] 赵依凡, 毛琦云, 翟晓雅, 张国英. 钼酸铋光催化剂的结构缺陷调控[J]. 化学进展, 2021, 33(8): 1331-1343.
[8] 白钰, 王拴紧, 肖敏, 孟跃中, 王成新. 燃料电池用高温质子交换膜[J]. 化学进展, 2021, 33(3): 426-441.
[9] 曹秀军, 张雷, 朱元鑫, 张鑫, 吕超南, 侯长民. 软铋矿基微纳米材料的设计合成及其在光催化中的应用[J]. 化学进展, 2020, 32(2/3): 262-273.
[10] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[11] 马晓辉, 杨立群, 郑士建, 戴其林, 陈聪, 宋宏伟. 全无机钙钛矿太阳电池: 现状与未来[J]. 化学进展, 2020, 32(10): 1608-1632.
[12] 朱红林, 李文英, 黎挺挺, Michael Baitinger, Juri Grin, 郑岳青. CO2电还原用氮掺杂碳基过渡金属单原子催化剂[J]. 化学进展, 2019, 31(7): 939-953.
[13] 龚乐, 杨蓉, 刘瑞, 陈利萍, 燕映霖, 冯祖飞. 石墨烯量子点在储能器件中的应用[J]. 化学进展, 2019, 31(7): 1020-1030.
[14] 邵奕嘉, 黄斌, 刘全兵, 廖世军. 三元镍钴锰正极材料的制备及改性[J]. 化学进展, 2018, 30(4): 410-419.
[15] 管杰, 孙玲娜, 徐琴*, 胡效亚*. 分子印迹型二氧化钛及其复合材料的合成和应用[J]. 化学进展, 2018, 30(11): 1749-1760.