English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1244-1254 DOI: 10.7536/PC140151 前一篇   后一篇

• 综述与评论 •

金属离子在微生物燃料电池中的行为

常定明, 张海芹, 卢智昊, 黄光团, 蔡兰坤, 张乐华*   

  1. 华东理工大学资源与环境工程学院 国家环境保护化工过程环境风险评价与控制重点实验室 上海 200237
  • 收稿日期:2014-01-01 修回日期:2014-04-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 张乐华 E-mail:lezhanghua@163.com
  • 基金资助:

    国家自然科学基金项目(No.20906026,51101058)和上海市浦江人才计划(No.09PJ1402900)资助

Behavior of Metal Ions in Microbial Fuel Cells

Chang Dingming, Zhang Haiqin, Lu Zhihao, Huang Guangtuan, Cai Lankun, Zhang Lehua*   

  1. State Environmental Protection Key Laboratory of Environmental Risk Assessment and Control on Chemical Process, School of Resources and Environmental Engineering, East China University of Science and Technology, Shanghai 200237, China
  • Received:2014-01-01 Revised:2014-04-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.20906026, 51101058) the and Shanghai Pujiang Program (No. 09PJ1402900)

在废水处理方面,微生物燃料电池具有在净化废水的同时回收能源或有价值化学品等突出优点,已经成为人们研究的热点。在微生物燃料电池中,金属离子能直接或者间接参与阳极和阴极过程,其对溶液的电导率、反应器的内阻和功率密度、产电微生物的活性等都有重要影响。本文综述了金属离子参与微生物燃料电池的机制及其影响因素,并且介绍了微生物燃料电池在去除废水或者固体废弃物中重金属离子方面的优势和发展前景。

Many researchers focus on the microbial fuel cells (MFCs) treating wastewater, due to their distinguished advantages of water purification as well as recovering energy or valuable chemicals. In microbial fuel cells, metal ions play an important role in the conductivity of solution, reactor resistance, power density, electricity production and activity of microorganism. Additionally, the metal ions are also involved into the anode or cathode reaction processes directly or indirectly in the MFCs. The mechanism of MFCs process participated with several metal ions and their influence factors are reviewed in this paper. Moreover, we discuss the advantages and development prospects of the MFCs removing heavy metal ions in wastewater or solid waste.

Contents
1 Introduction
2 Effect of inert metal salts on electrolyte conductivity and on internal resistance for MFCs
3 Effect of metal ions on anodic behavior
3.1 Effect of Ca2+ on anodic behavior
3.2 Effect of Fe3+ on anodic behavior
3.3 Effect of V5+ on anodic behavior
3.4 Effect of Mn4+/Mn2+ on anodic behavior
3.5 Effect of Pd2+,Au3+ on anodic behavior
3.6 Modified anode by other metal ions
3.7 Detection of heavy metal toxicity
4 Effect of metal ions on cathode behavior
4.1 Cu2+ used as cathode electron acceptor
4.2 Cr6+ used as cathode electron acceptor
4.3 Ag+ used as cathode electron acceptor
4.4 Effect of Fe3+/Fe2+ on cathodic behavior
4.5 Other metal ions used as cathode electron acceptor
4.6 Various metal ions used as cathode electron acceptor
4.7 Effects of modified cathode by transition metal ions on the cathode behavior
5 Perspectives

中图分类号: 

()

[1] Logan B E, Hamelers B, Rozendal R, Schröder U, Keller J, Freguia S, Aelterman P, Verstraete W, Rabaey K. Environ. Sci. Technol., 2006, 40: 5181.
[2] Du Z W, Li H R, Gu T Y. Biotechnol. Adv., 2007, 25: 464.
[3] Pant D, van Bogaert G, Diels L, Vanbroekhoven K. Bioresource Technol., 2010, 101: 1533.
[4] Tao H C, Wei L, Liang M, Xu N, Ni J R, Wu W M. Bioresource Technol., 2011, 102: 4774.
[5] Choi C, Cui Y. Bioresource Technol., 2012, 107: 522.
[6] 王爱杰(Wang A J), 任南琪(Ren N Q), 陶虎春(Tao H C).生物电化学系统: 从胞外电子传递到生物技术应用(Bioelectrochemical Systems:from Extracellular Electron Tranfer to Biotechnological Application).北京: 科学出版社(Beijing: Science Press), 2012. 5.
[7] 寇明旭(Dou M X), 刘全阳(Liu Q Y). 山西建筑(Shanxi Architecture), 2007, 33(5): 2.
[8] Logan B E. Microbial Fuel cells. John Wiley & Sons, 2009. 53.
[9] Wang Z, Lim B S, Lu H, Fan J, Choi C S. B. Kor. Chem. Soc., 2010, 31: 2025.
[10] Fuentes-Albarran C, Razo A D, Juarez K, Alvarez-Gallegos A. Sol. Energy, 2012, 86: 1099.
[11] Jiang D Q, Curtis M, Troop E, Scheible K, McGrath J, Hu B, Suib S, Raymond D, Li B. Int. J. Hydrogen. Energ., 2011, 36: 876.
[12] 毛艳萍(Mao Y P), 蔡兰坤(Cai L K), 张乐华(Zhang L H), 侯海萍(Hou H P), 黄光团(Huang G T), 刘勇弟(Liu Y D).化学进展(Progress in Chemistry), 2009, 21(7/8): 1672.
[13] Zhao F, Harnisch F, Schröder U, Scholz F, Bogdanoff P, Herrmann I. Environ. Sci. Technol., 2006, 40: 5193.
[14] Zhang B G, Zhou S G, Zhao H Z, Shi C H, Kong L C, Sun J J, Yang Y, Ni J R. Bioproc. Biosyst. Eng., 2010, 33: 187.
[15] Lefebvre O, Tan Z, Kharkwal S, Ng H Y. Bioresource Technol., 2012, 112: 336.
[16] Rousseau R, Dominguez-Benetton X, Délia M L, Bergel A. Electrochem. Commun., 2013, 33: 1.
[17] Choi M J, Chae K J, Ajayi F F, Kim K Y, Yu H W, Kim C W, Kim I S. Bioresource Technol., 2011, 102: 298.
[18] Ahn Y, Logan B E. Bioresource Technol., 2013, 132: 436.
[19] Fitzgerald L A, Petersen E R, Gross B J, Soto C M, Reigeisen B R, El-Naggar M Y, Bingfinger J C. Biosens. Bioelectron., 2012, 31: 492.
[20] Wu D, Xing D F, Lu L, Wei M, Liu B F, Ren N Q. Bioresource Technol., 2013, 135: 630.
[21] Zhang J X, Zhang Y B, Quan X, Chen S. Water Res., 2013, 47: 5719.
[22] Shechter Y, Karlish S J D. Nature, 1980, 284: 556
[23] 计亮年(Ji L N), 毛宗万(Mao Z W), 黄锦汪(Huang J W), 莫庭焕(Mo T H). 生物无机化学导论(Introduction of Bioinorganic Chemistry). 广州:中山大学出版社(Guangzhou: Sun Yat-sen University Press), 2001. 68.
[24] 李浩然(Li H R), 冯雅丽(Feng Y L), 邹晓阎(Zhou X Y), 罗小兵(Luo X B).中国有色金属学报(The Chinese Journal of Nonferrous Metals), 2009, 19(9): 1700.
[25] 李少华(Li S H), 杜竹玮(Du Z W), 祝学远(Zhu X Y), 刘巍(Liu W), 傅德贤(Fu D X),李浩然(Li H R). 过程工程学报(Chinese Journal of Process Engineering), 2007, 7(3): 589.
[26] Schröder U. Phys. Chem. Chem. Phys., 2007, 9(21): 2619.
[27] Bond D R, Lovley D R. Appl. Environ. Microbiol., 2005, 71: 2186.
[28] 李魁忠(Li K Z), 付玉彬(Fu Y B), 徐谦(Xu Q), 赵仲凯(Zhao Z K), 刘佳(Liu J).材料开发与应用(Development and Application of Materials), 2011, 26(3): 46.
[29] Park D, Zeikus J. Appl. Microbiol. Biotechnol., 2002, 59: 58.
[30] 文海(Wen H), 黄登强(Huang D Q). 广西轻工业(Guangxi Journal of Light Industry), 2008, 24(11): 20.
[31] Park B. Nanotechnology: Consequences for Human Health and the Environment. Cambridge, UK: RSC Publishing, 2007. 1.
[32] Bunge M, Sbjerg L S, Rotaru A E,Gauthier D, Lindhardt A T, Hause G, Finster K, Kingshott P, Skrydstrup T, Meyer R L. Biotechnol. Bioeng., 2010, 107: 206.
[33] Wu X E, Zhao F, Rahunen N, Varcoe J R, Avignone-Rossa C, Thumser A E, Slade R C T. Angewandte Chemie, 2011, 123: 447.
[34] Wu R R, Cui L, Chen L X, Wang C, Cao C L, Sheng G P, Yu H Q, Zhao F. Scientific Reports, 2013, 3: 1.
[35] Kim J R, Min B, Logan B E. Appl. Microbiol. Biotechnol., 2005, 68: 23.
[36] Lowy D A, Tender L M, Zeikus J G, Park D H, Lovley D R. Biosens. Bioelectron., 2006, 21: 2058.
[37] Heijne T A, Hamelers H V M, Saakes M, Buisman C J N. Electrochim. Acta, 2008, 53: 5697.
[38] Lv Z S, Xie D H, Yue X J, Feng C H, Wei C H. J. Power Sources, 2012, 210: 26.
[39] 宋娟(Song J), 赵华章(Zhao H Z), 杨亲正(Yang Q Z), 彭艳丽(Peng Y L). 化学与生物工程(Chemistry & Bioengineering), 2009, 26(7): 16.
[40] 曾丽珍(Zeng L Z), 李伟善(Li W S). 电池工业(Chinese Battery Industry), 2009, 14(4): 280.
[41] 张玲(Zhang L), 彭蜀君(Peng S J), 叶路生(Ye L S), 毛翔洲(Mao X Z), 谢晴(Xie Q),但德忠(Dan D Z). 中国测试(China Measurement & Test), 2010, 36(5): 36.
[42] 谢丽(Xie L), 程佳(Cheng J), 马玉龙(Ma Y L).广东电工(Guangdong Chemical Industry), 2011, 38(4): 27.
[43] Kim M, Hyun M S, Gadd G M, Kim H J. J. Environ. Monitoring, 2007, 9: 1323.
[44] 吴锋(Wu F), 刘志(Liu Z), 周奔(Zhou B), 周顺贵(Zhou S G), 饶力群(Rao L Q), 王跃群(Wang Y Q). 环境科学(Environmental Science), 2010, 31(7): 1596.
[45] Shen Y, Wang M, Chang I S, Ng H Y. Bioresource Technol., 2013, 136: 707.
[46] Feng C J, Hou C, Chen S H, Yu C P. Bioresource Technol., 2013, 143: 76.
[47] 朱俊杰(Zhu J J), 罗鲲(Luo K), 潘宏程(Pan H C),译(Trans). 电分析化学基础(Foundamentals of Electroanalytieal Chemistry). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2012. 235
[48] 梁敏(Liang M), 陶虎春(Tao H C), 李绍峰(Li S F), 张丽娟(Zhang L J), 倪晋仁(Ni J R). 环境科学(Environmental Science), 2011, 32(1): 179.
[49] Tao H C, Zhang L J, Gao Z Y, Wu W M. Bioresource Technol., 2011, 102: 10334.
[50] Zhang L J, Tao H C, Wei X Y, Lei T, Li J B, Wang A J, Wu W M. Chemosphere, 2012, 89: 1177.
[51] Heijne A T, Liu F, Weijden R, Weijma J, Buisman C, Hamelers H. Eviron. Sci. Technol., 2010, 44: 4376.
[52] Tao H C, Liang M, Wei L, Xu N, Ni J R, Wu W M. J. Hazard. Mater., 2011, 189: 186.
[53] Cheng S A, Wang B S, Wang Y H. Bioresource Technol., 2013, 147: 332.
[54] 孟祥和(Meng X H), 胡国飞(Hu G F). 重金属废水处理(Treatment of Wastewater Containing Heavy Metals). 北京: 化学工业出版社(Beijing: Chemical Industry Press), 2000. 12.
[55] Wang G, Huang L P, Zhang Y F. Biotechnol. Lett., 2008, 30: 1959.
[56] Tandukar M, Huber S J, Onodera T, Pavlostathis S. Eviron. Sci. Technol., 2009, 43: 8159.
[57] Li Y, Lu A, Ding H R, Jin S, Yan Y H, Wang C Q, Zen C P, Wang X. Electronchem. Commun., 2009, 11: 1496.
[58] Li Z, Zhang X, Lei L. Process Biochem., 2008, 43: 1352.
[59] 赵立新(Zhao L X), 孔凡英(Sun F Y), 王宣(Wang X), 温青(Wen Q), 孙茜(Sun Q), 吴英(Wu Y). 现代化工(Modern Chemical Industry), 2009, 29: 37.
[60] Romanenko V I, Koren'kov V N. Mikrobiologiia, 1977, 46: 414.
[61] Huang L P, Chen J W, Quan X, Yang F L. Bioproc. Biosyst. Eng., 2010, 33: 937.
[62] Huang L P, Chai X L, Chen G H, Logan B E. Eviron. Sci. Technol., 2011, 45: 5025.
[63] Huang L P, Chai X L, Cheng S A, Chen G H. Chem. Eng. J., 2011, 66: 652.
[64] Liu L, Yuan Y, Li F B, Feng C H. Bioresource Technol., 2011, 102: 2468.
[65] Xafenias N, Zhang Y, Banks C J. Eviron. Sci. Technol., 2013, 47: 4512.
[66] Tao H C, Gao Z Y, Ding H, Xu N, Wu W M. Bioresource Technol., 2012, 111: 92.
[67] Wang Y H, Wang B S, Pan B, Chen Q Y, Yan W. Appl. Energ., 2013, 112: 1337.
[68] Chung K, Lee I, Han J I.Chemosphere, 2012, 86: 415.
[69] Wang Y, Niu C G, Zeng G M, Hu W J, Huang D W, Ruan M. Int. J. Hydrogen Energ., 2011, 36: 15344.
[70] Heijne A T, Liu F, Rijnsover L, Saakes M, Hamelers H, Buisman C. J. Power Sources, 2011, 196: 7572.
[71] Lefebvre O, Neculita C M, Yue X, Ng H Y. J. Hazard. Mater., 2012, 241/242: 411.
[72] Wang Z J, Lim B, Choi C. Bioresource Technol., 2011, 102: 6304.
[73] Choi C, Hu N. Bioresource Technol., 2013, 133: 589.
[74] Zhang B G, Feng C P, Ni J R, Zhang J, Huang W L. J. Power Sources, 2012, 204: 34.
[75] Rhoads A, Beyenal H, Lewandowski Z. Environ. Sci. Technol., 2005, 39(12): 4666.
[76] Shantaram A, Beyenal H, Veluchamy R R A,Lewandowski Z. Environ. Sci. Technol., 2005, 39: 5037.
[77] Mao Y P, Zhang L H, Li D M, Shi H F, Liu Y D, Cai L K. Electrochimica Acta, 2010, 55: 7804.
[78] Li X, Hu B, Suib S, Lei Y, Li B. J. Power Sources, 2010, 195: 2586.
[79] Mahmoud M, Gad-Allah T A, El-Khatib K M, El-Gohary F. Bioresource Technol., 2011, 102: 10459.
[80] Hasvold O, Henriksen H, Melvaer E, Citi G, Johansen B O, Kjonigsen T, Galetti R. J. Power Sources, 1997, 65: 253.
[81] Bergel A, Féron D, Mollica A. Electrochem. Commun., 2005, 7: 900.
[82] Rabaey K, Read S T, Clauwaert P, Freguia S, Bond P L,Blackall L L, Keller J. ISME J., 2008, 1.
[83] Qin B Y, Luo H P, Liu G L, Zhang R D, Chen S S, Hou Y P, Luo Y. Bioresource Technol., 2012, 121: 458.
[84] Modin O, Wang X F, Wu X, Rauch S, Fedje K K. J. Hazard. Mater., 2012, 235/236: 291.
[85] Cao X X, Huang X, Liang P, Xiao K, Zhou Y J, Zhang X Y, Logan B E. Environ. Sci. Technol., 2009, 43: 7148.
[86] Mehanna M, Saito T, Yan J L, Hickner M, Cao X X, Huang X, Logan B E. Environ. Sci. Technol., 2010, 3: 1114.
[87] Chen X, Xia X, Liang P, Cao X X, Sun H T, Huang X. Environ. Sci. Technol., 2011, 45: 2465.
[88] Zuo K C, Yuan L L, Wei J C, Liang P, Huang X. Bioresource Technol., 2013, 146: 637.
[89] Huang L P, Guo R, Jiang L J, Quan X, Sun Y L, Chen G H. Chem. Eng. J., 2013, 220: 72.
[90] Huang L P, Li T C, Liu C, Quan X, Chen L J, Wang A J, Chen G H. Bioresource Technol., 2013, 128: 539.
[91] Liu Y X, Shen J Y, Huang L P, Wu D. J. Hazard. Mater., 2013, 262C: 1.

[1] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[2] 高耕, 张克宇, 王倩雯, 张利波, 崔丁方, 姚耀春. 金属草酸盐基负极材料——离子电池储能材料的新选择[J]. 化学进展, 2022, 34(2): 434-446.
[3] 谢勇, 韩明杰, 徐钰豪, 熊晨雨, 王日, 夏善红. 荧光内滤效应在环境检测领域的应用[J]. 化学进展, 2021, 33(8): 1450-1460.
[4] 于帅兵, 王召璐, 庞绪良, 王蕾, 李连之, 林英武. 多肽基金属离子传感器[J]. 化学进展, 2021, 33(3): 380-393.
[5] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[6] 吴金柯, 王建军, 戴礼兴, 孙东豪, 陈嘉嘉. 金属配位聚氨酯[J]. 化学进展, 2021, 33(12): 2188-2202.
[7] 刘志超, 穆洪亮, 李艳, 冯柳, 王东, 温广武. 金属-有机框架材料衍生转换型负极在碱金属离子电池中的应用[J]. 化学进展, 2021, 33(11): 2002-2023.
[8] 张瑞, 吴云, 王鲁天, 吴强, 张宏伟. 微生物燃料电池阴极脱氮[J]. 化学进展, 2020, 32(12): 2013-2021.
[9] 谭远铭, 孟皓, 张霞. 功能化MOFs及MOFs/聚合物复合膜在有机染料和重金属离子吸附分离中的应用[J]. 化学进展, 2019, 31(7): 980-995.
[10] 郑亚楠, 王丹. 金属调控蛋白的结构、性质及应用[J]. 化学进展, 2019, 31(10): 1372-1383.
[11] 杨姗也, 王祥学, 陈中山, 李倩, 韦犇犇, 王祥科. 四氧化三铁基纳米材料制备及对放射性元素和重金属离子的去除[J]. 化学进展, 2018, 30(2/3): 225-242.
[12] 刘明学, 董发勤, 聂小琴, 丁聪聪, 何辉超, 杨刚. 光电子协同微生物介导的重金属离子还原与电子转移机理[J]. 化学进展, 2017, 29(12): 1537-1550.
[13] 孟德芃, 吴俊涛. 静电纺丝法制备新型吸附分离材料[J]. 化学进展, 2016, 28(5): 657-664.
[14] 杨楚汀, 韩军, 罗阳明, 胡胜, 汪小琳. 环肽对金属离子的识别作用[J]. 化学进展, 2014, 26(09): 1537-1550.
[15] 李慧, 孔德明. 脱氧核酶在重金属离子检测中的应用[J]. 化学进展, 2013, 25(12): 2119-2130.