English
新闻公告
More
化学进展 2014, Vol. 26 Issue (07): 1099-1106 DOI: 10.7536/PC140110 前一篇   后一篇

• 特约稿 •

多组分聚合体系的探索

王诗琪, 付长奎, 危岩, 陶磊*   

  1. 清华大学化学系 北京 100084
  • 收稿日期:2014-01-01 修回日期:2014-03-01 出版日期:2014-07-15 发布日期:2014-05-22
  • 通讯作者: 陶磊 E-mail:leitao@mail.tsinghua.edu.cn
  • 基金资助:

    国家自然科学基金青年科学基金项目(No.21104039)资助

Exploration of Multicomponent Polymerization System

Wang Shiqi, Fu Changkui, Wei Yen, Tao Lei*   

  1. Department of Chemistry, Tsinghua University, Beijing 100084, China
  • Received:2014-01-01 Revised:2014-03-01 Online:2014-07-15 Published:2014-05-22
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21104039)

多组分反应是利用三种或者三种以上反应物一锅法得到终产物的反应。在此过程中,无需对中间产物进行分离提纯,而且几乎所有反应物的原子都出现在生成物当中。因此多组分反应经常被用来合成具有复杂结构的化合物。我们在多组分反应中引入可聚合元素,将功能化单体合成和可控聚合结合在一起,一步合成具有特殊官能结构的聚合物。这个体系中的反应均互不干扰,有着良好的匹配效果。因此,得到的产物具有可控的分子量和很窄的分子量分布。与传统方法相比,这种多组分聚合体系节省了反应时间、降低了合成成本、合成途径更加绿色经济。我们现已发展了多种多组分聚合体系,按照复杂程度不同分为二元、三元和四元体系。通过不同的有机小分子反应与可控聚合的结合,我们成功制备了一些通过其他聚合方法难以或是无法合成的新型聚合物,体现了这一聚合方法的特点和优势。随着对多组分聚合体系认识的不断深入,相信我们能够更简便地合成更多结构新颖的聚合物。

Multicomponent reactions (MCRs) are those reactions which incorporate three or more starting materials in one pot and prepare the final products effectively and efficiently. During multicomponent reactions, nearly all atoms from reactants contribute to the final product. Also, such reactions are free from lengthy intermediate separation and purification, so they have been widely used to synthesize complicated molecules such as drug precursors, bioactive molecules and so on. Our group has developed a unique system to carry out MCRs on the polymerization platform, combining monomer preparation and in situ controlled polymerization together in one-pot style, thus generating multifunctional polymers in one-step. The reactions involved in this system cooperated well without interference, thus generating well-defined products with controlled molecular weight and narrow polydispersity index(PDI). Compared with traditional multifunctional polymer synthesis techniques (step-by-step or post-modification approaches), this one-pot system has many intrinsic advantages: time-saving, atom-economic, green and highly efficient. By now, we have successfully developed several multicomponent polymerization systems, including binary, ternary and even quaternary systems. Meanwhile, the further applications of these systems have been investigated as well. We have demonstrated that chiral polymers and gradient polymers, which are difficult to be synthesized through orthodox approaches, could be easily and effectively prepared in these systems. With more investigation and understanding about this one-pot multicomponent polymerization system, we believe that it could be a facile and versatile alternative methodology for multifunctional polymer synthesis and preparation in the near future.

Contents
1 Introduction
2 Multicomponent one-pot polymerization and functionalization system
2.1 Binary system
2.2 Ternary system
2.3 Quaternary system
3 Applications of multicomponent one-pot polymerization and functionalization system
4 Conclusion and outlook

中图分类号: 

()

[1] Ugi I, Dömling A, Hörl W. Endeavour, 1994, 18: 115.
[2] Armstrong R W, Combs A P, Tempest P A, Brown S D, Keating T A. Acc. Chem. Res., 1996, 29: 123.
[3] Ramón D J, Yus M. Angew. Chem. Int. Ed., 2005, 44: 1602.
[4] Zhu J, Bienaymé H. Multicomponent Reactions. John Wiley & Sons, 2006, 33.
[5] Ganem B. Acc. Chem. Res., 2009, 42: 463.
[6] Dömling A, Wang W, Wang K. Chem. Rev., 2012, 112: 3083.
[7] Ruijter E, Scheffelaar R, Orru R V A. Angew. Chem. Int. Ed., 2011, 50: 6234.
[8] Bienaymé H, Hulme C, Oddon G, Schmitt P. Chem. -A Eur. J., 2000, 6: 3321.
[9] Tietze L F, Modi A. Med. Res. Rev., 2000, 20: 304.
[10] Weber L. Curr. Med. Chem., 2002, 9: 2085.
[11] Guillena G, Ramón D J, Yus M. Tetrahedron: Asymmetry, 2007, 18: 693.
[12] Sunderhaus J D, Dockendorff C, Martin S F. Org. Lett., 2007, 9: 4223.
[13] Tejedor D, Garcia-Tellado F. Chem. Soc. Rev., 2007, 36: 484.
[14] Strecker A. Justus Liebigs Ann. Chem., 1850, 75: 27.
[15] Hantzsch A. Justus Liebigs Ann. Chem., 1882, 215: 1.
[16] Kappe C O. Acc. Chem. Res., 2000, 33: 879.
[17] Biginelli P. Berichte Der Dtsch. Chem. Gesellschaft, 1891, 24: 1317.
[18] Mannich C, Jacobsohn W. Berichte Der Dtsch. Chem. Gesellschaft, 1910, 43: 189.
[19] Arend M, Westermann B, Risch N. Angew. Chem. Int. Ed., 1998, 37: 1044.
[20] Passerini M. Gazz. Chim. Ital., 1921, 51: 126.
[21] Banfi L, Riva R. Organic Reactions. John Wiley&Sons, 2004.1.
[22] Ugi I. Angew. Chem. Int. Ed. English, 1962, 1: 8.
[23] Dömling A, Ugi I. Angew. Chem. Int. Ed., 2000, 39: 3168.
[24] Weber L. Drug Discov. Today, 2002, 7: 143.
[25] Hulme C, Gore V. Curr. Med. Chem., 2003, 10: 51.
[26] Touré B B, Hall D G. Chem. Rev., 2009, 109: 4439.
[27] Kalinski C, Lemoine H, Schmidt J, Burdack C, Kolb J, Umkehrer M, Ross G. Synthesis (Stuttg), 2008, 2008: 4007.
[28] Cao H, Liu H, Dömling A. Chem. -A Eur. J., 2010, 16: 12296.
[29] Robinson R. J. Chem. Soc. Trans., 1917, 111: 762.
[30] Hawker C J, Wooley K L. Science, 2005, 309 : 1200.
[31] Hoyle C E, Lowe A B, Bowman C N. Chem. Soc. Rev., 2010, 39: 1355.
[32] Lundberg P, Hawker C J, Hult A, Malkoch M. Macromol. Rapid Commun., 2008, 29: 998.
[33] Rudick J G. J. Polym. Sci. Part A Polym. Chem., 2013, 51: 3985.
[34] Kakuchi R. Angew. Chem. Int. Ed., 2014, 53: 46.
[35] Lee I H, Kim H, Choi T L. J. Am. Chem. Soc., 2013, 135: 3760.
[36] Kreye O, Türün O, Sehlinger A, Rackwitz J, Meier M A R. Chem. -A Eur. J., 2012, 18: 5767.
[37] Robotham C, Baker C, Cuevas B, Abboud K, Wright D. Mol. Divers., 2003, 6: 237.
[38] Sehlinger A, de Espinosa L M, Meier M A R. Macromol. Chem. Phys., 2013, 214: 2821.
[39] Rubinshtein M, James C R, Young J L, Ma Y J, Kobayashi Y, Gianneschi N C, Yang J. Org. Lett., 2010, 12: 3560.
[40] Kreye O, Tóth T, Meier M A R. J. Am. Chem. Soc., 2011, 133: 1790.
[41] Sehlinger A, Schneider R, Meier M A R. Eur. Polym. J., 2014, 50: 150.
[42] Deng X X, Li L, Li Z L, Lv A, Du F S, Li Z C. ACS Macro Lett., 2012, 1: 1300.
[43] Wang Y Z, Deng X X, Li L, Li Z L, Du F S, Li Z C. Polym. Chem., 2013, 4: 444.
[44] Zhang L J, Deng X X, Du F S, Li Z C. Macromolecules, 2013, 46: 9554.
[45] Lv A, Deng X X, Li L, Li Z L, Wang Y Z, Du F S, Li Z C. Polym. Chem., 2013, 4: 3659.
[46] Li L, Lv A, Deng X X, Du F S, Li Z C. Chem. Commun., 2013, 49: 8549.
[47] Geng J, Lindqvist J, Mantovani G, Haddleton D M. Angew. Chem. Int. Ed., 2008, 47: 4180.
[48] Golas P L, Matyjaszewski K. Chem. Soc. Rev., 2010, 39: 1338.
[49] Damiron D, Desorme M, Ostaci R V, Al Akhrass S, Hamaide T, Drockenmuller E. J. Polym. Sci. Part A Polym. Chem., 2009, 47: 3803.
[50] Sumerlin B S, Vogt A P. Macromolecules, 2009, 43: 1.
[51] Mansfeld U, Pietsch C, Hoogenboom R, Becer C R, Schubert U S. Polym. Chem., 2010, 1: 1560.
[52] Johnson J A, Lewis D R, Díaz D D, Finn M G, Koberstein J T, Turro N J. J. Am. Chem. Soc., 2006, 128: 6564.
[53] Johnson J A, Finn M G, Koberstein J T, Turro N J. Macromolecules, 2007, 40: 3589.
[54] Johnson J A, Finn M G, Koberstein J T, Turro N J. Macromol. Rapid Commun., 2008, 29: 1052.
[55] Schumers J M, Gohy J F, Fustin C A. Polym. Chem., 2010, 1: 161.
[56] Nakatani K, Terashima T, Sawamoto M. J. Am. Chem. Soc., 2009, 131: 13600.
[57] Nakatani K, Ogura Y, Koda Y, Terashima T, Sawamoto M. J. Am. Chem. Soc., 2012, 134: 4373.
[58] Ouchi M, Terashima T, Sawamoto M. Chem. Rev., 2009, 109: 4963.
[59] Ogura Y, Terashima T, Sawamoto M. ACS Macro Lett., 2013, 2: 985.
[60] Gody G, Rossner C, Moraes J, Vana P, Maschmeyer T, Perrier S. J. Am. Chem. Soc., 2012, 134: 12596.
[61] Fu C, Tao L, Zhang Y, Li S, Wei Y. Chem. Commun., 2012, 48: 9062.
[62] Wang S, Fu C, Zhang Y, Tao L, Li S, Wei Y. ACS Macro Lett., 2012, 1: 1224.
[63] Zhang Y, Fu C, Zhu C, Wang S, Tao L, Wei Y. Polym. Chem., 2013, 4: 466.
[64] Zhu C, Yang B, Zhao Y, Fu C, Tao L, Wei Y. Polym. Chem., 2013, 4: 5395.
[65] Zhang Y, Zhao Y, Yang B, Zhu C, Wei Y, Tao L. Polym. Chem., 2014, 5:1857.
[66] Daskalaki E, Le Droumaguet B, Gérard D, Velonia K. Chem. Commun., 2012, 48: 1586.
[67] Zhang W, Zhang W, Zhang Z, Zhu J, Zhu X. Macromol. Rapid Commun., 2010, 31: 1354.
[68] Wong C H. Science, 1989, 244 : 1145.
[69] Koeller K M, Wong C H. Nature, 2001, 409: 232.
[70] Davis B G, Boyer V. Nat. Prod. Rep., 2001, 18: 618.
[71] Klibanov A. Nature, 2001, 409: 241.
[72] Hudlicky T, Reed J W. Chem. Soc. Rev., 2009, 38: 3117.
[73] Kumar A, Gross R A. J. Am. Chem. Soc., 2000, 122: 11767.
[74] Kumar A, Gross R A. Biomacromolecules, 2000, 1: 133.
[75] Kumar A, Kalra B, Dekhterman A, Gross R A. Macromolecules, 2000, 33: 6303.
[76] Albertin L, Kohlert C, Stenzel M, Foster L J R, Davis T P. Biomacromolecules, 2004, 5: 255.
[77] Granville A M, Quémener D, Davis T P, Barner-Kowollik C, Stenzel M H. Macromol. Symp., 2007, 255: 81.
[78] Gotor-Fernández V, Busto E, Gotor V. Adv. Synth. Catal., 2006, 348: 797.
[79] Hrsic E, Keul H, Möller M. Macromol. Rapid Commun., 2013, DOI 10.1002/marc.201300512.
[80] Fields E. J. Am. Chem. Soc., 1952, 74: 1528.
[81] Cherkasov R A, Galkin V I. Russ. Chem. Rev., 1998, 67: 857.
[82] Bhagat S, Chakraborti A K. J. Org. Chem., 2007, 72: 1263.
[83] Zefirov N, Matveeva E. Arkivoc, 2008, 39: 418.
[84] Kafarski P, Lejczak B. Phosphorus Sulfur Silicon Relat. Elem., 1991, 63: 193.
[85] Kafarski P, Lejczak B. Curr. Med. Chem. Anticancer Agents, 2001, 1: 301.
[86] Naydenova E D, Todorov P T, Troev K D. Amino Acids, 2010, 38: 23.
[87] Orsini F, Sello G, Sisti M. Curr. Med. Chem., 2010, 17: 264.
[88] Stadler A, Kappe C O. J. Comb. Chem., 2001, 3: 624.
[89] Kappe C O, Stadler A. Org. React., 2004, 63:1.
[90] Panda S, Khanna P, Khanna L. Curr. Org. Chem., 2012, 16: 507.
[91] Stadler A, Kappe C O. J.Comb.Chem., 2001, 3: 624.
[92] Kappe C O. Eur. J. Med. Chem., 2000, 35: 1043.
[93] Akhaja T N, Raval J P. Eur. J. Med. Chem., 2011, 46: 5573.
[94] Zabihollahi R, Vahabpour R. Acta Virol., 2012, 56: 11.
[95] Skey J, O'reilly R K. J. Polym. Sci. Part A Polym. Chem., 2008, 46: 3690.
[96] Lai L M, Lam J W Y, Tang B Z. J. Polym. Sci. Part A Polym. Chem., 2006, 44: 2117.
[97] Mori H, Matsuyama M, Sutoh K, Endo T. Macromolecules, 2006, 39: 4351.
[98] Kumar S, Roy S G, De P. Polym. Chem., 2012, 3: 1239.
[99] Fu C, Zhu C, Wang S, Liu H, Zhang Y, Guo H, Tao L, Wei Y. Polym. Chem., 2013, 4: 264.
[100] Matyjaszewski K, Ziegler M J, Arehart S V, Greszta D, Pakula T. J. Phys. Org. Chem., 2000, 13: 775.
[101] Zaremski M Y, Kalugin D I, Golubev V B. Polym. Sci. Ser. A, 2009, 51: 103.
[102] Qin S, Saget J, Pyun J, Jia S, Kowalewski T. Macromolecules, 2003, 36: 8969.
[103] Shin E J, Brown H A, Gonzalez S, Jeong W, Hedrick J L, Waymouth R M. Angew. Chem. Int. Ed., 2011, 50: 6388.
[104] Karaky K, Pere E, Pouchan C, Desbrieres J, Derail C, Billon L. Soft Matter, 2006, 2: 770.
[105] Fu C, Yang B, Zhu C, Wang S, Zhang Y, Wei Y, Tao L. Polym. Chem., 2013, 4: 5720.

[1] 张婉萍, 刘宁宁, 张倩洁, 蒋汶, 王梓鑫, 张冬梅. 刺激响应性聚合物微针系统经皮药物递释[J]. 化学进展, 2023, 35(5): 735-756.
[2] 曹如月, 肖晶晶, 王伊轩, 李翔宇, 冯岸超, 张立群. 杂Diels-Alder 环加成反应级联RAFT聚合[J]. 化学进展, 2023, 35(5): 721-734.
[3] 董宝坤, 张婷, 何翻. 柔性热电材料的研究进展及应用[J]. 化学进展, 2023, 35(3): 433-444.
[4] 刘峻, 叶代勇. 抗病毒涂层[J]. 化学进展, 2023, 35(3): 496-508.
[5] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[6] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[7] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[8] 黄帅, 陶钰, 黄银亮. 基于液晶聚合物的光致形变复合材料[J]. 化学进展, 2022, 34(9): 2012-2023.
[9] 王慧悦, 胡欣, 胡玉静, 朱宁, 郭凯. 酶催化原子转移自由基聚合[J]. 化学进展, 2022, 34(8): 1796-1808.
[10] 陈峥, 姜振华. 浅析高分子树脂无溶剂生产技术中的高分子凝聚态相关化学问题[J]. 化学进展, 2022, 34(7): 1576-1589.
[11] 尹航, 李智, 郭晓峰, 冯岸超, 张立群, 汤华燊. RAFT链转移剂的选用原则及通用型RAFT链转移剂[J]. 化学进展, 2022, 34(6): 1298-1307.
[12] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[13] 周天瑜, 王彦博, 赵翌琳, 李洪吉, 刘春波, 车广波. 水相识别分子印迹聚合物在样品预处理中的应用[J]. 化学进展, 2022, 34(5): 1124-1135.
[14] 李程浩, 刘亚敏, 卢彬, 萨拉乌拉, 任先艳, 孙亚平. 碳点的高性能化和功能化改性:方法、特性与展望[J]. 化学进展, 2022, 34(3): 499-518.
[15] 付素芊, 汪英, 刘凯, 贺军辉. 微纳多孔聚合物薄膜的制备与应用[J]. 化学进展, 2022, 34(2): 241-258.
阅读次数
全文


摘要

多组分聚合体系的探索