English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 987-995 DOI: 10.7536/PC140103 前一篇   后一篇

• 综述与评论 •

血红素蛋白二聚、寡聚与多聚

林英武*1,2   

  1. 1. 南华大学化学化工学院 衡阳 421001;
    2. 南华大学蛋白质结构与功能实验室 衡阳 421001
  • 收稿日期:2014-01-01 修回日期:2014-02-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 林英武 E-mail:linlinying@hotmail.com;ywlin@usc.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 21101091,31370812)和教育部留学回国人员启动基金项目资助

Dimerization, Oligomerization and Polymerization of Heme Proteins

Lin Yingwu*1,2   

  1. 1. School of Chemistry and Chemical Engineering, University of South China, Hengyang 421001, China;
    2. Laboratory of Protein Structure and Function, University of South China, Hengyang 421001, China
  • Received:2014-01-01 Revised:2014-02-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21101091, 31370812) and the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China

血红素蛋白在生物体系中执行多种重要的生物功能,如氧贮存和运输、电子传递、生物催化和生物传感等。尽管大多数血红素蛋白是以单体形式存在,一些血红素蛋白在体外和/或体内,还会形成同源聚合物。本文综述了血红素蛋白的二聚、寡聚与多聚研究进展,包括肌红蛋白、细胞色素c、胞红蛋白,细胞色素b5、细胞色素b562、亚硝酸盐还原酶、血红素传感蛋白和血红素转运蛋白等,着重介绍其结构与功能以及多聚体分子设计的方法与应用。这些研究进展,一方面增强了我们对生物体系中血红素蛋白结构与功能关系的认识,另一方面也赋予了我们通过多聚方法设计功能蛋白来调控和利用血红素蛋白的能力。

Heme proteins play various important roles in biological systems such as oxygen storage and transport, electron transfer, catalysis and signaling. Although most heme proteins exist as a monomer, homomeric complexes are also observed for some heme proteins in vitro and/or in vivo. This review summarized the progress of dimerization, oligomerization and polymerization of heme proteins, including myoglobin, cytochrome c, cytoglobin, cytochrome b5, cytochrome b562, nitrite reductase, heme-based sensor and heme transport proteins, etc., and focused on the resultant structures and functions, as well as the approaches for rational design of polymers and their applications. These progresses, on one hand, enhanced our knowledge of the structure-function relationship of heme proteins in biological systems, and on the other hand, endowed us an ability of regulating and utilizing heme proteins by functional protein design through polymerization.

Contents
1 Introduction
2 Dimerization of heme proteins
2.1 Structure and function of dimeric myoglobin
2.2 Structure and function of dimeric cytochrome c
2.3 Structure and function of dimeric cytoglobin
2.4 Structure and function of dimeric nitrite reductase
2.5 Structure and function of dimeric heme-based sensor protein
2.6 Structure and function of dimeric heme transport protein
3 Oligomerization of heme proteins
4 Polymerization of heme proteins
4.1 Rational design of heme protein polymer
4.2 Applications of heme protein polymer
5 Conclusion and outlook

中图分类号: 

()

[1] Lu Y, Yeung N, Sieracki N, Marshall N M. Nature, 2009, 460: 855.
[2] Lin Y W, Sawyer E B, Wang J. Chem. Asian J., 2013, 8: 2534.
[3] Lin Y W, Wang J, Lu Y. Sci. China Chem., 2014, 57(3): 346.
[4] 林英武(Lin Y W),黄仲贤(Huang Z X). 化学进展(Progress in Chemistry), 2006, 18(6): 794.
[5] 林英武(Lin Y W). 化学进展(Progress in Chemistry), 2010, 22(6): 1203.
[6] 林英武(Lin Y W).化学进展(Progress in Chemistry), 2012, 24(4): 147.
[7] 林英武(Lin Y W).化学进展(Progress in Chemistry), 2012, 24(5): 129.
[8] Lin Y W, Wang J. J. Inorg. Biochem., 2013, 129(12): 162.
[9] Uversky V N. FEBS J., 2010, 277: 2940.
[10] Kendrew J C, Bodo G, Dintzis H M, Parrish R G, Wyckoff H, Phillips D C. Nature, 1958, 181(4610): 662.
[11] Phillips S E. J. Mol. Biol., 1980, 142(4): 531.
[12] Van den Oord A H, Wesdorp J J, van Dam A F, Verheij J A. Eur. J. Biochem., 1969, 1: 140.
[13] Nagao S, Osuka H, Yamada T, Uni T, Shomura Y, Imai K, Higuchi Y, Hirota S. Dalton Trans., 2012, 41: 11378.
[14] Bushnell G W, Louie G V, Brayer G D. J. Mol. Biol., 1990, 214(2): 585.
[15] Margoliash E, Lustgarten J. J. Biol. Chem., 1962, 237: 3397.
[16] Hirota S, Hattori Y, Nagao S, Taketa M, Komori H, Kamikubo H, Wang Z, Takahashi I, Negi S, Sugiura Y, Kataoka M, Higuchi Y. Proc. Natl. Acad. Sci. U.S.A., 2010, 107: 12854.
[17] Wang Z, Matsuo T, Nagao S, Hirota S. Org. Biomol. Chem., 2011, 9: 4766.
[18] Hirota S, Ueda M, Hayashi Y, Nagao S, Kamikubo H, Kataoka M. J. Biochem., 2012, 152: 521.
[19] Parui P P, Deshpande M S, Nagao S, Kamikubo H, Komori H, Higuchi Y, Kataoka M, Hirota S. Biochemistry, 2013, 52(48): 8732.
[20] Nugraheni A D, Nagao S, Yanagisawa, Ogura T, Hirota S. J. Biol. Inorg. Chem., 2013, 18: 383.
[21] De Sanctis D, Dewilde S, Pesce A, Moens L, Ascenzi P, Hankeln T, Burmester T, Bolognesi M. J. Mol. Biol., 2004, 336: 917.
[22] Burmester T, Weich B, Reinhardt S, Hankeln T. Nature, 2000, 407: 520.
[23] Fiocchettia M, DeMarinis E, Ascenzi P, Marino M. Biochim. Biophys. Acta, 2013, 1834(9): 1744.
[24] Astudillo L, Bernad S, Derrien V, Sebban P, Miksovska J. J. Inorg. Biochem., 2013, 129: 23.
[25] Makino M, Sugimoto H, Sawai H, Kawada N, Yoshizato K, Shiro Y. Acta Crystallogr. D: Biol. Crystallogr., 2006, 62: 671.
[26] 蒋华麟(Jiang H L), 谭相石(Tan X S). 化学进展(Progress in Chemistry), 2009, 21(5): 911.
[27] Rinaldo S, Giardina G, Castiglione N, Stelitano V, Cutruzzolà F. Biochem. Soc. Trans., 2011, 39: 195.
[28] Nurizzo D, Silvestrini M C, Mathieu M, Cutruzzolà F, Bourgeois D, Fülöp V, Hajdu J, Brunori M, Tegoni M, Cambillau C. Structure, 1997, 5: 1157.
[29] Cutruzzola F, Brown K, Wilson E K, Bellelli A, Arese M, Tegoni M, Cambillau C, Brunori M. Proc. Natl. Acad. Sci. U.S.A., 2001, 98: 2232.
[30] Lin Y W, Nie C M, Liao L F. J. Mol. Model., 2012, 18(9): 4409.
[31] Rodgers K R. Curr. Opin. Chem. Biol., 1999, 3: 158.
[32] Spiro T G, Jarzecki A A. Curr. Opin. Chem. Biol., 2001, 5: 715.
[33] Aono S. Acc. Chem. Res., 2003, 36: 825.
[34] Gilles-Gonzalez M A, Gonzalez G. J. Inorg. Biochem., 2005, 99: 1.
[35] Shimizu T. J. Inorg. Biochem., 2012, 108: 171.
[36] Uchida T, Sagami I, Shimizu T, Ishimori K, Kitagawa T. J. Inorg. Biochem., 2012, 108: 188.
[37] Nakajima K, Kitanishi K, Kobayashi K, Kobayashi N, Igarashi J, Shimizu T. J. Inorg. Biochem., 2012, 108: 163.
[38] Takahashi H, Sekimoto M, Tanaka M, Tanaka A, Igarashi J, Shimizu T. J. Inorg. Biochem., 2012, 109: 66.
[39] Liebl U, Lambry J C, Vos M H. Biochim. Biophys. Acta, 2013, 1834(9): 1684.
[40] Lanzilotta W N, Schuller D J, Thorsteinsson M V, Kerby R L, Roberts G P, Poulos T L. Nat. Struct. Biol., 2000, 7(10): 876.
[41] Russwurm M, Koesling D. Mol. Cell. Biochem., 2002, 230(1/2): 159.
[42] Zhong F, Wang H, Ying T, Huang Z X, Tan X. Amino Acids, 2010, 39(2): 399.
[43] Zhong F, Pan J, Liu X, Wang H, Ying T, Su J, Huang Z X, Tan X. J. Biol. Inorg. Chem., 2011, 16(8): 1227.
[44] Pan J, Xu Q, Lin Y W, Zhong F, Tan X. Chem. Commun., 2013, 49: 7454.
[45] Komori H, Inagaki S, Yoshioka S, Aono S, Higuchi Y. J. Mol. Biol., 2007, 367: 864.
[46] Wang J, Karpus J, Zhao B S, Luo Z, Chen P R, He C. Angew. Chem. Int. Ed., 2012, 51: 9652.
[47] Giegé P, Grienenberger J M, Bonnard G. Mitochondrion, 2008, 8(1): 61.
[48] Stevens J M, Mavridou D A, Hamer R, Kritsiligkou P, Goddard A D, Ferguson S J. FEBS J., 2011, 278(22): 4170.
[49] Simon J, Hederstedt L. FEBS J., 2011, 278(22): 4179.
[50] De Vitry C. FEBS J., 2011, 278(22): 4189.
[51] Allen J W. FEBS J., 2011, 278(22): 4198.
[52] Sawyer E B, Barker P D. Protein and Cell, 2012, 3(6): 405.
[53] Chan A C K, Lelj-Garolla B, Rosell F I, Pedersen K A, Mauk A G, Murphy M E P. J. Mol. Biol., 2006, 362: 1108.
[54] Junedi S, Yasuhara K, Nagao S, Kikuchi J I, Hirota S. Chem. Bio. Chem., 2014,15(4): 517.
[55] Miller W L, Auchus R J, Geller D H. Steroids, 1997, 62: 133.
[56] Durley R C, Mathews F S. Acta Crystallogr. D, 1996, 52: 65.
[57] Schenkman J B, Jansson I. Pharmacol. Ther., 2003, 97: 139.
[58] Ahuja S, Jahr N, Im S C, Vivekanandan S, Popovych N, Le Clair S V, Huang R, Soong R, Xu J, Yamamoto K, Nanga R P, Bridges A, Waskell L, Ramamoorthy A. J. Biol. Chem., 2013, 288(30): 22080.
[59] Ren Y, Wang W H, Wang Y H, Case M, Qian W, McLendon G, Huang Z X. Biochemistry, 2004, 43: 3527.
[60] Lin Y W, Wang W H, Zhang Q, Lu H J, Yang P Y, Xie Y, Huang Z X, Wu H M. Chem. Bio. Chem., 2005, 6(8): 1356.
[61] Lin Y W, Zhao D X, Wang Z H, Yu W H, Huang Z X. Protein Expr. Purif., 2006, 45(2): 352.
[62] Wan D, Liao L F, Zhao M M, Wu M L, Wu Y M, Lin Y W. J. Mol. Model., 2012, 18(3): 1009.
[63] Lin Y W, Sun M H, Wan D, Liao L F. Spectrochim. Acta A, 2012, 96: 365.
[64] Sun M H, Liu S Q, Du K J, Nie C M, Lin Y W. Spectrochim. Acta A, 2014, 118: 130.
[65] Storbeck K, Swart A C, Lombard N, Adriaanse C V, Swart P. J. Steroid Biochem. Mol. Biol., 2012, 132: 311.
[66] Storbeck K H, Swart A C, Goosen P, Swart P. Mol. Cell. Endocrinol., 2013, 371: 87.
[67] Oohora K, Onoda A, Hayashi T. Chem. Commun., 2012, 48: 11714.
[68] Arnesano F, Banci L, Bertini I, Faraone-Mennella J, Rosato A, Barker P D, Fersht A R. Biochemistry, 1999, 38: 8657.
[69] Urayama P, Phillips G N Jr, Gruner S M, Structure, 2002, 10: 51.
[70] Kitagishi H, Oohora K, Yamaguchi H, Sato H, Matsuo T, Harada A, Hayashi T. J. Am. Chem. Soc., 2007, 129: 10326.
[71] Kitagishi H, Oohora K, Hayashi T. Biopolymers, 2009, 91: 194.
[72] Kitagishi H, Kakikura Y, Yamaguchi H, Oohora K, Harada A, Hayashi T. Angew. Chem. Int. Ed., 2009, 48: 1271.
[73] Oohora K, Oohora A, Kitagishi H, Yamaguchi H, Harada A, Hayashi T. Chem. Sci., 2011, 2: 1033.
[74] Radford R J, Brodin J D, Salgado E N, Tescan F A. Coord. Chem. Rev., 2011, 255: 790.
[75] Brodin J D, Ambroggio X I, Tang C, Parent K N, Baker T S, Tezcan F A. Nat. Chem., 2012, 4: 375.
[76] Onoda A, Ueya Y, Sakamoto T, Uematsu T, Hayashi T. Chem. Commun., 2010, 46: 9107.
[77] Onoda A, Kakikura Y, Uematsu T, Kuwabata S, Hayashi T. Angew. Chem. Int. Ed., 2012, 51: 2628.
[78] Onoda A, Kakikura Y, Hayashi T. Dalton Trans., 2013, 42: 16102.
[79] Fndrich M, Fletcher M A, Dobson C M. Nature, 2001, 410: 165.
[80] Fndrich M, Forge V, Buder K, Kittler M, Dobson C M, Diekmann S. Proc. Natl. Acad. Sci. U.S.A., 2003, 100: 15463.
[81] Fabiani E, Stadler A M, Madern D, Fabiani E, Stadler A M, Madern D, Koza M M, Tehei M, Hirai M, Zaccai G. Eur. Biophys. J., 2009, 38: 237.
[82] Infusini G, Iannuzzi C, Vilasi S, Birolo L, Pagnozzi D, Pucci P, Irace G, Sirangelo I. Eur. Biophys. J., 2012, 41: 615.
[83] Iannuzzi C, Marritato R, Irace G, Sirangelo I. Int. J. Mol. Sci., 2013, 14: 14287.
[84] Brodin J D, Carr J R, Sontz P A, Tezcan F A. Proc. Natl. Acad. Sci. U.S.A., 2014, 11: 2897.

[1] 桑艳华, 潘海华, 唐睿康. 生物矿化中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1100-1114.
[2] 林英武. 人工金属酶分子设计新进展:肌红蛋白研究实例分析[J]. 化学进展, 2018, 30(10): 1464-1474.
[3] 林英武. 细胞色素b5-蛋白质相互作用研究[J]. 化学进展, 2012, 24(04): 589-597.
[4] 王珏, 詹岳雄, 姜标. 海洋二聚吡咯-咪唑类生物碱[J]. 化学进展, 2011, 23(10): 2065-2078.
[5] 黎占亭. 氢键介质的芳酰胺折叠体:从构象控制到功能演化[J]. 化学进展, 2011, 23(01): 1-12.
[6] 金培元,巨勇. 新型甾体缀合物的设计合成及活性研究*[J]. 化学进展, 2007, 19(012): 1883-1895.
[7] 林英武,黄仲贤. 血红素蛋白的分子设计新趋向[J]. 化学进展, 2006, 18(06): 794-800.
[8] 宋钦华,郭庆祥. DNA光复活作用机理的研究进展*[J]. 化学进展, 2001, 13(06): 428-.
阅读次数
全文


摘要

血红素蛋白二聚、寡聚与多聚