English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 950-960 DOI: 10.7536/PC131250 前一篇   后一篇

• 综述与评论 •

三维(3D)石墨烯及其复合材料的应用

周国珺, 叶志凯, 石微微, 刘吉洋, 奚凤娜*   

  1. 浙江理工大学化学系 先进纺织材料与制备技术教育部重点实验室 杭州 310018
  • 收稿日期:2013-12-01 修回日期:2014-01-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 奚凤娜 E-mail:xx19811981@126.com
  • 基金资助:

    国家自然科学基金项目(No. 21305127)、浙江理工大学科研启动基金项目(No. 13062173-Y)和浙江理工大学521人才培养基金资助

Applications of Three Dimensional Graphene and Its Composite Materials

Zhou Guojun, Ye Zhikai, Shi Weiwei, Liu Jiyang, Xi Fengna*   

  1. Department of Chemistry, Key Laboratory of Advanced Textile Materials and Manufacturing Technology of Ministry of Education, Zhejiang Sci-Tech University, Hangzhou 310018, China
  • Received:2013-12-01 Revised:2014-01-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21305127), the Science Foundation of Zhejiang Sci-Tech University(No.13062173-Y) and the 521 Talent Project of Zhejiang Sci-Tech University

三维(3D)石墨烯通常是指具有3D结构的二维(2D)石墨烯组装体,是近年来石墨烯化学领域的新型功能性材料。将2D石墨烯片整合成具有3D结构的组装体可以有效调控石墨烯的电学、光学、机械、化学和催化特性,因此3D石墨烯材料不仅具有石墨烯固有的理化性质,其三维多孔的微/纳米结构还使其兼具比表面积大、机械强度高、电子传导能力优越及传质快速等优良特性。这些独特的性质使3D石墨烯及其复合材料在材料科学领域备受关注。研究发现,3D石墨烯及其复合材料应用于纳米电子学、能量储存和转换、化学和生物传感等研究领域均表现出优越的性能。本文结合当前研究热点,综述了3D石墨烯及其复合材料在催化、储氢/气体吸附、传感器、环境修复、超级电容器等领域中的应用进展,并简要评述目前3D石墨烯材料应用中所面临的挑战及发展前景。

In recent years, three dimensional (3D) graphene derived from 2D graphene assemblies, is an emerging functional material in the field of graphene chemistry. Integration of graphene sheets, two-dimensional (2D) nanoscale building blocks, into 3D assemblies which have well-defined 3D architecture, is an effective way for tuning and/or controlling the electrical, optical, chemical, mechanical or catalytical properties. As a novel kind of functional materials, the methodology for preparing 3D graphene materials with micro-/nano-architectures and the potential applications have triggered tremendous interests. The rationally designed 3D graphene architecture may not only provide inherently excellent properties of 2D graphene materials, such as high electronic, optical and catalytical properties, but also exhibit micro-/nano-architectures, huge specic surface areas, strong mechanical strengths, high electron conductivity and fast mass transport kinetics. Until now, 3D graphene materials have demonstrated superior performance when applied in nanoelectronics, energy storage/conversion, chemical and biological sensing, hybrid materials and other areas. In this article, we review recent advances of 3D graphene and its composite materials in the fields of catalysis, hydrogen/gas storage, sensor fabrication, environmental protection and supercapacity. The current challenges and future perspectives in the applications of 3D graphene materials are also outlined.

Contents
1 Introduction of 3D graphene materials
2 Preparation of 3D graphene architectures
3 Applications of 3D graphene and its composite materials
3.1 Applications as catalysis
3.2 Applications in hydrogen storage and other gases adsorption
3.3 Applications in fabrication of sensor
3.4 Applications in environmental remediation
3.5 Applications in fabrication of supercapacitor
4 Conclusion and outlook

中图分类号: 

()

[1] Yang X W, Zhu J W, Qiu L, Li Dan. Adv. Mater., 2011, 23:2833.
[2] Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. Adv. Mater., 2012, 24:4144.
[3] Li C, Shi G Q. Nanoscale, 2012, 4:5549.
[4] Rajesh, Paul R K, Mulchandani A. J. Power Sources, 2013, 223:23.
[5] Hu C G, Cheng H H, Zhao Y, Hu Y, Liu Y, Dai L M, Qu L T. Adv. Mater., 2012, 24:5493.
[6] Yu D S, Wei L, Jiang W C, Wang H, Sun B, Zhang Q, Goh K, Si R M, Chen Y. Nanoscale, 2013, 5:3457.
[7] Ma Y W, Sun L Y, Huang W, Zhang L R, Zhao J, Fan Q L, Huang W. J. Phys. Chem. C, 2011, 115:24592.
[8] Wu Z S, Yang S B, Sun Y, Parvez K, Feng X L, Müllen K. J. Am. Chem. Soc., 2012, 134:9082.
[9] Huang C C, Bai H, Li Chun, Shi G Q. Chem. Commun., 2011, 47:4962.
[10] He Y Q, Zhang N N, Gong Q J, Li Z L, Gao J P, Qiu H X. Mater. Chem. Phys., 2012, 134:585.
[11] Zhang L L, Xiong Z G, Zhao X S. ACS Nano, 2010, 4:7030.
[12] Wu C D, Fang T H, Lo J Y. Int. J. Hydrogen Energy, 2012, 37:14211.
[13] Dimitrakakis G K, Tylianakis E, Froudakis G E. Nano Lett., 2008, 8:3166.
[14] Wang Y, Guan C, Wang K, Guo C X, Li C M. J. Chem. Eng. Data, 2011, 56:642.
[15] Wang Y, Guo C X, Wang X, Guan C, Yang H B, Wang K, Li C M. Energy Environ. Sci., 2011, 4:195.
[16] Kim G, Jhi S H. J. Phys. Chem. C, 2009, 113:20499.
[17] Dong X C, Wang X W, Wang L H, Song H, Zhang H, Huang W, Chen P. ACS Appl. Mater. Interfaces, 2012, 4:3129.
[18] Xi F N, Zhao D J, Wang X W, Chen P. Electrochem. Commun., 2013, 26:81.
[19] Cao X H, Zeng Z Y, Shi W H, Yep P, Yan Q Y, Zhang H. Small, 2013, 9:1703.
[20] Dong X C, Xu H, Wang X W, Huang Y X, Chan-Park M B, Zhang H, Wang L H, Huang W, Chen P. ACS Nano, 2012, 6:3206.
[21] Dong X C, Ma Y W, Zhu G Y, Huang Y X, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. J. Mater. Chem., 2012, 22:17044.
[22] Dong X C, Cao Y F, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. RSC Adv., 2012, 2:4364.
[23] Chen L, Wang X J, Zhang X T, Zhang H M. J. Mater. Chem., 2012, 22:22090.
[24] Zhao B, Liu Z R, Fu W Y, Yang H B. Electronchem. Commun., 2013, 27:1.
[25] Wu J W, Wang C H, Wang Y C, Chang J K. Biosens. Bioelectron., 2013, 46:30.
[26] Li Z P, Wang J Q, Sheng L, Liu X H, Yang S R. J. Power Sources, 2011, 196:8160.
[27] Sun G Q, Lu J J, Ge S G, Song X R, Yu J H, Yan M, Huang J D. Anal. Chim. Acta, 2013, 775:85.
[28] Chen H C, Tsai R Y, Chen Y H, Lee R S, Hua M Y. Anal. Chim. Acta, 2013, 729:101.
[29] Sun W, Cao L L, Deng Y, Gong S X, Shi F, Li G N, Sun Z F. Anal. Chim. Acta, 2013, 781:41.
[30] Xi Q, Chen X, Evans D G, Yang W S. Langmuir, 2012, 28:9885.
[31] Chen J L, Zheng X L, Miao F J, Zhang J N, Cui X Q, Zheng W T. J. Appl. Electrochem., 2012, 42:875.
[32] Xiao X Y, Michael J R, Beechem T, McDonald A, Rodriguez M, Brumbach M T, Lambert T N, Washburn C M, Wang J, Brozik S M, Wheeler D R, Burckel D B, Polsky R. J. Mater. Chem., 2012, 22:23749.
[33] Xiao F, Li Y Q, Zan X L, Liao K, Xu R, Duan H W. Adv. Funct. Mater., 2012, 22:2487.
[34] Yavari F, Chen Z P, Thomas A V, Ren W C, Cheng H M, Koratkar N. Sci. Res., 2011, 1:166.
[35] Lin Q Q, Yang L, Yang M J. Sens. Actuators, B, 2012, 173:139.
[36] Ng S H, Guo C X, Li C M. Electroanal., 2011, 23:442.
[37] Niu Z Q, Chen J, Hng H H, Ma J, Chen X D. Adv. Mater., 2012, 24:4144.
[38] Li H, Liu L F, Yang F L. J. Mater. Chem. A, 2013, 1:3446.
[39] Tiwari J N, Mahesh K, Le N H, Kemp K C, Timilsian R, Tiwari R N, Kim K S. Carbon, 2013, 56:173.
[40] Dong X C, Chen J, Ma Y W, Wang J, Chen-Park M B, Liu X M, Wang L H, Huang W, Chen P. Chem. Commun., 2012, 48:10660.
[41] Wei G, Miao Y E, Zhang C, Yang Z, Liu Z Y, Tjiu W W, Liu T. ACS Appl. Mater. Interfaces, 2013, 5:7584.
[42] Wang J L, Shi Z X, Fan J C, Ge Y, Yin J, Hu G X. J. Mater. Chem., 2012, 22:22459.
[43] Li K X, Chen T, Yan L S, Dai Y H, Huang Z M, Guo H Q, Jiang L X, Gao X H, Xiong J J, Song D Y. Catal. Commun., 2012, 28:196.
[44] Zhang Z Y, Xiao F, Guo Y L, Wang S, Liu Y Q. ACS Appl. Mater. Interfaces, 2013, 5:2227.
[45] Hou C Y, Zhang Q H, Li Y G, Wang H Z. J. Hazard. Mater., 2012, 205/206:229.
[46] Cheng J S, Du J, Zhu W J. Carbohydr. Polym., 2012, 88:617.
[47] Zhang S, Shao Y Y, Liu J, Aksay I A, Lin Y H. ACS Appl. Mater. Interfaces, 2011, 3:3633.
[48] Gao H C, Sun Y M, Zhou J J, Xu R, Duan H W. ACS Appl. Mater. Interfaces 2013, 5, 425.
[49] Miller J R, Outlaw R A, Holloway B C. Science, 2010, 329:1637.
[50] Sheng K X, Sun Y Q, Li C, Yuan W J, Shi G Q. Sci. Res., 2012, 2:247.
[51] Zhang L, Shi G Q. J. Phys. Chem. C, 2011, 115:17206.
[52] Wu Z S, Winter A, Chen L, Sun Y, Turchanin A, Feng X L, Müllen K. Adv. Mater., 2012, 24:513.
[53] Li Z P, Wang J Q, Sheng L, Liu X H, Yang S R. J. Power Sources, 2011, 196:8160.
[54] Dong X C, Wang X W, Wang J, Song H, Li X G, Wang L H, Chan-Park M B, Li C M, Chen P. Carbon, 2012, 50:4865.
[55] Choi B G, Yang M H, Hong W H, Choi J W, Huh Y S. ACS Nano, 2012, 6:4020.
[56] Wu Z S, Ren W C, Wang D W, Li F, Liu B L, Cheng H M. ACS Nano, 2010, 4:5835.
[57] Zhai T, Wang F X, Yu M H, Xie S L, Liang C L, Li C, Xiao F M, Tang R H, Wu Q X, Lu X H, Tong Y X. Nanoscale, 2013, 5:6790.
[58] Wang B, Park J, Su D W, Wang C Y, Ahn H, Wang G X. J. Mater. Chem., 2012, 22:15750.
[59] Wang H L, Holt C M B, Li Z, Tan X H, Amirkhiz B S, Xu Z W, Olsen B C, Stephenson T, Mitlin D. Nano Res. 2012, 5:605.
[60] Xu Y X, Huang X Q, Lin Z Y, Zhong X, Huang Y, Duan X F. Nano. Res., 2013, 6:65.
[61] Cao X H, Shi Y M, Shi W H, Lu G, Huang X, Yan Q Y, Zhang Q C, Zhang H. Small, 2011, 7:3163.
[62] Zhou W J, Cao X H, Zeng Z Y, Shi W H, Zhu Y Y, Yan Q Y, Liu H, Wang J Y, Zhang H. Energy Environ. Sci., 2013, 6:2216.
[63] Leng K, Zhang F, Zhang L, Zhang T F, Wu Y P, Lu Y H, Huang Y, Chen Y S. Nano. Res., 2013, 6:581.
[64] Dong X C, Wang J X, Wang J, Chan-Park M B, Li X G, Wang L H, Huang W, Chen P. Mater. Chem. Phys., 2012, 134:576.
[65] Tai Z X, Yan X B, Xue Q J. J. Electrochem. Soc., 2012, 159:A1702.
[66] Dong X C, Cao Y F, Wang J, Chan-Park M B, Wang L H, Huang W, Chen P. RSC Advances, 2012, 2:4364.
[67] Chen C M, Zhang Q, Huang C H, Zhao X C, Zhang B S, Kong Q Q, Wang M Z, Yang Y G, Cai R, Su D S. Chem. Commun., 2012, 48:7149.
[68] Fan Z J, Yan J, Zhi L J, Zhang Q, Wei T, Feng J, Zhang M, Qian W Z, Wei F. Adv. Mater. 2010, 22:3723.
[69] Lin J, Zhang C G, Yan Z, Zhu Y, Peng Z W, Hauge R. H., Natelson D, Tour J M. Nano Lett., 2013, 13:72.
[70] Xu Z W, Li Z, Holt C M B, Tan X H, Wang H L, Amirkhiz B S, Stephenson T, Mitlin D. J. Phys. Chem. Lett., 2012, 3:2928.
[71] You B, Wang L L, Yao L, Yang J. Chem. Commun., 2013, 49:5016.
[72] Li S M, Wang Y S, Yang S Y, Liu C H, Chang K H, Tien H W, Wen N T, M. Ma C C, Hu C C. J. Power Sources, 2013, 225:347.
[73] Du F, Yu D S, Dai L M, Varshney S G V, Roy A K. Chem. Mater., 2011, 23:4810.
[74] Ye S B, Feng J C, Wu P Y. ACS Appl. Mater. Interfaces, 2013, 5:7122.
[75] Si P, Ding S J, Lou X W, Kim D H. RSC Adv., 2011, 1:1271.
[76] Wang Y, Guo C X, Wang X, Guan C, Yang H B, Wang K, Li C M. Energy Environ. Sci., 2011, 4:195.
[77] Ning G Q, Li T Y, Yan J, Xu C G, Wei T, Fan Z J. Carbon, 2013, 54:241.
[78] Cheng Q, Tang J, Shinya N, Qin L C. J. Power Sources, 2013, 241:423.
[79] Xu Y X, Lin Z Y, Huang X Q, Liu Y, Huang Y, Duan X F. ACS Nano, 2013, 7:4042.
[80] Shao Y L, Wang H Z, Zhang Q H, Li Y G. J. Mater. Chem. C, 2013, 1:1245.
[81] Zhang B W, Yu B, Zhou F, Liu W M. J. Mater. Chem. A, 2013, 1:8587.
[82] Meng Y N, Zhao Y, Hu C G, Cheng H H, Hu Y, Zhang Z P, Shi G Q, Qu L T. Adv. Mater. 2013, 25:2326.

[1] 李婧, 朱伟钢, 胡文平. 基于有机复合材料的近红外和短波红外光探测器[J]. 化学进展, 2023, 35(1): 119-134.
[2] 王琦桐, 丁嘉乐, 赵丹莹, 张云鹤, 姜振华. 储能薄膜电容器介电高分子材料[J]. 化学进展, 2023, 35(1): 168-176.
[3] 张永, 张辉, 张逸, 高蕾, 卢建臣, 蔡金明. 表面合成异质原子掺杂的石墨烯纳米带[J]. 化学进展, 2023, 35(1): 105-118.
[4] 蒋峰景, 宋涵晨. 石墨基液流电池复合双极板[J]. 化学进展, 2022, 34(6): 1290-1297.
[5] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[6] 姜鸿基, 王美丽, 卢志炜, 叶尚辉, 董晓臣. 石墨烯基人工智能柔性传感器[J]. 化学进展, 2022, 34(5): 1166-1180.
[7] 李晓微, 张雷, 邢其鑫, 昝金宇, 周晋, 禚淑萍. 磁性NiFe2O4基复合材料的构筑及光催化应用[J]. 化学进展, 2022, 34(4): 950-962.
[8] 庞欣, 薛世翔, 周彤, 袁蝴蝶, 刘冲, 雷琬莹. 二维黑磷基纳米材料在光催化中的应用[J]. 化学进展, 2022, 34(3): 630-642.
[9] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[10] 徐妍, 苑春刚. 纳米零价铁复合材料制备、稳定方法及其水处理应用[J]. 化学进展, 2022, 34(3): 717-742.
[11] 张辉, 熊玮, 卢建臣, 蔡金明. 超高真空下纳米石墨烯磁性及调控[J]. 化学进展, 2022, 34(3): 557-567.
[12] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[13] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[14] 唐向春, 陈家祥, 刘利娜, 廖世军. 具有三维特殊形貌/纳米结构的Pt基电催化剂[J]. 化学进展, 2021, 33(7): 1238-1248.
[15] 吴磊, 刘利会, 陈淑芬. 基于碳基透明电极的柔性有机电致发光二极管[J]. 化学进展, 2021, 33(5): 802-817.