English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 1005-1020 DOI: 10.7536/PC131233 前一篇   后一篇

• 综述与评论 •

锂单离子导电固态聚合物电解质

张恒1, 郑丽萍1, 聂进1, 黄学杰2, 周志彬*1   

  1. 1. 大型电池关键材料与系统教育部重点实验室 华中科技大学化学与化工学院 武汉 430074;
    2. 中国科学院物理研究所 北京 100190
  • 收稿日期:2013-12-01 修回日期:2014-02-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 周志彬 E-mail:zb-zhou@mail.hust.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 51172083)资助

Single Lithium-Ion Conducting Solid Polymer Electrolytes

Zhang Heng1, Zheng Liping1, Nie Jin1, Huang Xuejie2, Zhou Zhibin*1   

  1. 1. Key Laboratory for Large-Format Battery Materials and System-Ministry of Education, School of Chemistry and Chemical Engineering, Huazhong University of Science and Technology, Wuhan 430074, China;
    2. Institute of Physics, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2013-12-01 Revised:2014-02-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 51172083)

锂单离子导电固态聚合物电解质是一类锂离子迁移数接近1的锂离子导体,可以有效避免阴离子移动产生浓差极化,从而提高锂电池的容量以及循环性能,成为近年来固态聚合物电解质的研究热点。本文综述了锂单离子导电固态聚合物电解质的研究进展,重点关注了电导率和锂离子迁移数较高的体系,并简要评述了锂单离子导电固态聚合物电解质所面临的挑战以及发展前景。

Single lithium-ion conductors (SLICs), which have anions covalently bonded to polymers or immobilized by anion acceptors, have been intensively studied. SLICs are generally accepted to have advantages over conventional salt-in-polymer electrolytes for application in lithium batteries due to the unity transference number and the absence of detrimental effect of anion polarization. By now, many types of SLICs have been reported, including organic polymers, organic-inorganic hybrid polymers and anion acceptors. In this paper, progresses in SLICs are reviewed, which mainly focused on their electrochemical properties, especially those with high ionic conductivity and high lithium-ion transference number. The current challenges and future perspectives in this field are also prospected.

Contents
1 Introduction
2 Organic polymer-based single lithium-ion con-ductors
2.1 Single lithium-ion conductors based on lithium salts of ionomer without ion conduction matrix
2.2 Single lithium-ion conductors based on lithium salts of ionomer with ion conduction matrix
3 Organic-inorganic hybrid polymers
3.1 The siloxane-based single lithium-ion conductors
3.2 The aluminate and borate-based hybrid polymers
4 Anion acceptor
4.1 Lewis acid-based anion acceptor
4.2 Calixarene and their derivatives
5 Conclusions and outlook

中图分类号: 

()

[1] 骆蓉(Luo R), 聂进(Nie J). 功能高分子学报(Journal of Functional Polymers), 2004, 17:151.
[2] 董晓臣(Dong X C),王立(Wang L). 化学进展(Progress in Chemistry), 2005, 17:248.
[3] 程琥(Cheng H), 李涛(Li T), 杨勇(Yang Y). 化学进展(Progress in Chemistry), 2006, 18:543.
[4] 凌志军(Ling Z J), 何向明(He X M), 李建军(Li J J), 姜长印(Jiang C Y), 万春荣(Wan C R). 化学进展(Progress in Chemistry), 2006, 18:459.
[5] 陈伟(Chen W),张以河(Zhang Y H). 工程塑料应用(Engineering Plastics Application), 2010, 38:89.
[6] 张恒(Zhang H), 周志彬(Zhou Z B), 聂进(Nie J). 化学进展(Progress in Chemistry), 2013, 25:761.
[7] Fenton D E, Parker J M, Wright P V. Polymer, 1973, 14:589.
[8] Angell C A, Liu C, Sanchez E. Nature, 1993, 362:137.
[9] Doyle M, Fuller T F, Newman J. Electrochim. Acta, 1994, 39:2073.
[10] Thomas K E, Sloop S E, Kerr J B, Newman J. J. Power Sources, 2000, 89:132.
[11] Bannister D J, Davies G R, Ward I M, McIntyre J E. Polymer, 1984, 25:1291.
[12] Hardy L C, Shriver D F. Macromolecules, 1984, 17:975.
[13] Hardy L C, Shriver D F. J. Am. Chem. Soc., 1985, 107:3823.
[14] Kim H T, Park J K. Solid State Ionics, 1997, 98:237.
[15] Kobayashi N, Uchiyama M, Tsuchida E. Solid State Ionics, 1985, 17:307.
[16] Ryu S W, Trapa P E, Olugebefola S C, Gonzalez-Leon J A, Sadoway D R, Mayes A M. J. Electrochem. Soc., 2005, 152:A158.
[17] Zhang S S, Deng Z H, Wan G X. Polymer Journal, 1991, 23:73.
[18] Sun X G, Hou J, Kerr J B. Electrochim. Acta, 2005, 50:1139.
[19] Benrabah D, Sylla S, Sanchez J Y, Armand M. J. Power Sources, 1995, 54: 456.
[20] Park C H, Sun Y K, Kim D W. Electrochim. Acta, 2004, 50:375.
[21] Xu W, Siow K S, Gao Z, Lee S Y. Chem. Mater., 1998, 10:1951.
[22] Watanabe M, Suzuki Y, Nishimoto A. Electrochimica Acta, 2000, 45:1187.
[23] Watanabe M, Tokuda H, Muto S. Electrochim. Acta, 2001, 46:1487.
[24] Geiculescu O E, Yang J, Zhou S, Shafer G, Xie Y, Albright J, Creager S E, Pennington W T, DesMarteau D D. J. Electrochem. Soc., 2004, 151:A1363.
[25] Feng S W, Shi D Y, Liu F, Zheng L P, Nie J, Feng W F, Huang X J, Armand M, Zhou Z B. Electrochim. Acta, 2013, 93:254.
[26] Allcock H R, Welna D T, Maher A E. Solid State Ionics, 2006, 177:741.
[27] Bouchet R, Maria S, Meziane R, Aboulaich A, Lienafa L, Bonnet J P, Phan T N T, Bertin D, Gigmes D, Devaux D, Denoyel R, Armand M. Natrue Mater., 2013, 12:452.
[28] Xu W, Williams M D, Angell C A. Chem. Mater., 2002, 14:401.
[29] Sun X G, Reeder C L, Kerr J B. Macromolecules, 2004, 37:2219.
[30] Sun X G, Angell C A. Solid State Ionics, 2004, 175:743.
[31] Chen H M, Deng Z H, Zheng Y G, Xu W, Wan G X. J. Macromol. Sci. Part A, 1996, 33:1273.
[32] Benrabah D, Sylla S, Alloin F, Sanchez J Y, Armand M. Electrochim. Acta, 1995, 40:2259.
[33] Tokuda H, Muto S, Hoshi N, Minakata T, Ikeda M, Yamamoto F, Watanabe M. Macromolecules, 2002, 35:1403.
[34] Markusson H, Tokuda H, Watanabe M, Johansson P, Jacobsson P. Polymer, 2004, 45:9057.
[35] 袁余斌(Yuan Y B), 聂进(Nie J). 有机化学(Chinese J Org. Chem.), 2004, 24:857.
[36] Feiring E A, Choi S K, Doyle M, Wonchoba E R. Macromolecules, 2000, 33:9262.
[37] Meziane R, Bonnet J P, Courty M, Djellab K, Armand M. Electrochim. Acta, 2011, 57:14.
[38] Brandell D, Kasemägi H, Tamm T, Aabloo A. Solid State Ionics, 2013, DOI:10.1016/j.ssi.2013.09.039.
[39] Wang M K, Zhao F, Dong S J. J. Phys. Chem. B, 2004, 108:1365.
[40] Zhu Y S, Gao X W, Wang X J, Hou Y Y, Liu L L, Wu Y P. Electrochem. Commun., 2012, 22:29.
[41] Tsuchida E, Ohno H, Kobayashi N, Ishizaka H. Macromolecules, 1989, 22: 1771.
[42] Ito K, Ohno H. Solid State Ionics, 1995, 79:300.
[43] Tada Y, Sato M, Takeno N, Nakacho Y, Shigehara K. Chem. Mater., 1994, 6:27.
[44] Ito K, Nishina N, Ohno H. J. Mater. Chem., 1997, 7:1357.
[45] Ito K, Tominaga Y, Ohno H. Electrochim. Acta, 1997, 42:1561.
[46] Nakai Y, Ito K, Ohno H. Solid State Ionics, 1998, 113/115:199.
[47] Tominaga Y, Ohno H. Solid State Ionics, 1999, 124:323.
[48] Tominaga Y, Ohno H. Electrochim. Acta, 2000, 45:3081.
[49] Baum P, Meyer W H, Wegner G. Polymer, 2000, 41:965.
[50] Xu W, Angell C A. Solid State Ionics, 2002, 147:295.
[51] Hallac B B, Geiculescu O E, Rajagopal R V, Creager S E, DesMarteau D D. Electrochim. Acta, 2008, 53:5985.
[52] Herath M B, Creager S E, Rajagopal R V, Geiculescu O E, DesMarteau D D. Electrochim. Acta, 2009, 54:5877.
[53] Tsuchida E, Kobayashi N, Ohno H. Macromolecules, 1988 21:96.
[54] Kim H T, Park J K. Polymer Bulletin, 1996, 36:427.
[55] Zhang S S, Deng Z H, Wan G X. Chinese J. Polym. Sci., 1991, 9:326.
[56] Zhang S S, Deng Z H, Wan G X. J. Macromol. Sci. Part A, 1992, 29:77.
[57] Zhang S S, Wan G X. J. Appl. Polym. Sci., 1993, 48:405.
[58] Cowie J M G, Spence G H. Solid State Ionics, 1999, 123:233.
[59] Sadoway D R, Huang B Y, Trapa P E, Soo P P, Bannerjee P, Mayes A M. J. Power Sources, 2001, 97/98:621.
[60] Trapa P E, Acar M H, Sadoway D R, Mayes A M. J. Electrochem. Soc., 2005, 152:A2281.
[61] Sun X G, Kerr J B, Reeder C L, Liu G, Han Y B. Macromolecules, 2004, 37:5133.
[62] Sun X G, Kerr J B. Macromolecules, 2006, 39:362.
[63] 肖明艳(Xiao M Y), 陈建敏(Chen J M). 高分子材料科学与工程(Polymer Materials Science and Engineering), 2001, 17:6.
[64] 范群英(Fan Q Y),詹红兵(Zhan H B). 化学进展(Progress in Chemistry), 2012, 24:54.
[65] 崔孟忠(Cui M Z), 李竹云(Li Z Y), 张洁(Zhang J),冯圣玉(Feng S Y). 化学进展(Progress in Chemistry), 2008, 20:1987.
[66] Huang X J, Chen L Q, Huang H, Xue R J, Ma Y Q, Fang S B, Li Y J, Jiang Y Y. Solid State Ionics, 1992, 51:69.
[67] Siska D P, Shriver D F. Chem. Mater., 2001, 13:4698.
[68] Snyder J F, Hutchison J C, Ratner M A, Shriver D F. Chem. Mater., 2003, 15:4223.
[69] Snyder J F, Ratner M A, Shriver D F. J. Electrochem. Soc., 2003, 150:A1090.
[70] Liang S W, Choi U H, Liu W J, Runt J, Colby R H. Chem. Mater., 2012, 24:2316.
[71] Doan K E, Ratner M A, Shriver D F. Chem. Mater., 1991, 3:418.
[72] Rawsky G C, Fujinami T, Shriver D F. Chem. Mater., 1994, 6:2208.
[73] Onishi K, Matsumoto M, Nakacho Y, Shigehara K. Chem. Mater., 1996, 8:469.
[74] Fujinami T, Tokimune A, Mehta M A. Chem. Mater., 1997, 9:2236.
[75] Fujinami T, Mehta M A, Sugie K, Mori K. Electrochim. Acta, 2000, 45:1181.
[76] Onishi K, Matsumoto M, Shigehara K. Chem. Mater., 1998, 10:927.
[77] Matsumi N, Sugai K, Ohno H. Macromolecules, 2002, 35:5731.
[78] Matsumi N, Sugai K, Ohno H. Macromolecules, 2003, 36:2321.
[79] Aoki T, Konno A, Fujinami T. J. Electrochem. Soc., 2004, 151:A887.
[80] Aoki T, Konno A, Fujinami T. Electrochim. Acta, 2004, 50:301.
[81] Nishihara Y, Miyazaki M, Tomita Y, Kadono Y, Takagi K. J. Polym. Sci. A, 2008, 46:7913.
[82] Mehta M A, Fujinami T. Chem. Lett., 1997, 26:915.
[83] Lee H S, Yang X Q, Xiang C L, McBreen J, Choi L S. J. Electrochem. Soc., 1998, 145:2813.
[84] McBreen J, Lee H S, Yang X Q, Sun X. J. Power Sources, 2000, 89:163.
[85] Hirakimoto T, Nishiura M, Watanabe M. Electrochim. Acta, 2001, 46:1609.
[86] Zhang S S, Angell C A. J. Electrochem. Soc., 1996, 143:4047.
[87] Strauss E, Golodnitsky D, Ardel G, Peled E. Electrochim. Acta, 1998, 43:1315.
[88] Mehta M A, Fujinami T. Solid State Ionics, 1998, 113/115:187.
[89] Mehta M A, Fujinami T, Inoue T. J. Power Sources, 1999, 81/82:724.
[90] Mehta M A, Fujinami T, Inoue S, Matsushita K, Miwa T, Inoue T. Electrochim. Acta, 2000, 45:1175.
[91] Kurono R, Mehta M A, Inoue T, Fujinami T. Electrochim. Acta, 2001, 47:483.
[92] Yang Y, Inoue T, Fujinami T, Mehta M A. Solid State Ionics, 2001, 140:353.
[93] 黄志镗(Huang Z T), 杨联明(Yang L L). 化学进展(Progress in Chemistry), 1994, 6:173.
[94] 郑炎松(Zheng Y S). 化学进展(Progress in Chemistry), 1999, 11:275.
[95] 吕鉴泉(Lü J Q), 陈朗星(Chen L X), 郭洪声(Guo H S), 何锡文(He X W). 化学进展(Progress in Chemistry), 2001, 13:209.
[96] Blazejczyk A, Wieczorek W, Kovarsky R, Golodnitsky D, Peled E, Scanlon L G, Appetecchi G B, Scrosati B. J Electrochem. Soc., 2004, 151:A1762.
[97] Blazejczyk A, Szczupak M, Wieczorek W, Cmoch P, Appetecchi G B, Scrosati B, Kovarsky R, Golodnitsky D, Peled E. Chem. Mater., 2005, 17:1535.
[98] Johansson P, Abrahamsson E, Jacobsson P. J. Molecular Structure: THEOCHEM, 2005, 717:215.
[99] Johansson P, Jacobsson P. Electrochimica Acta, 2005, 50:3782.
[100] Kalita M, Bukat M, Ciosek M, Siekierski M, Chung S H, Rodríguez T, Greenbaum S G, Kovarsky R, Golodnitsky D, Peled E, Zane D, Scrosati B, Wieczorek W. Electrochim. Acta, 2005, 50:3942.
[101] Plewa A, Chyliński F, Kalita M, Bukat M, Parzuchowski P, Borkowska R, Siekierski M, ukowska G Z, Wieczorek W. J. Power Sources, 2006, 159:431.
[102] Kalita H M, Plewa-Marczewska A, ukowska G Z, Sasim E, Wieczorek W, Siekierski M. Electrochim. Acta, 2010, 55:1298.
[103] Stephan A M, Kumar T P, Angulakshmi N, Salini P S, Sabarinathan R, Srinivasan A, Thomas S. J. Appl. Polym. Sci., 2011, 120:2215.
[104] Aravindan V, Gnanaraj J, Madhavi S, Liu H K. Chem. Eur. J., 2011, 17:14326.
[105] Han H B, Guo J, Zhang D J, Feng S W, Feng W F, Nie J, Zhou Z B. Electrochem. Commun., 2011, 13:265.
[106] Han H B, Zhou S S, Zhang D J, Feng S W, Li L F, Liu K, Feng W F, Nie J, Li H, Huang X J, Armand M, Zhou Z B. J. Power Sources, 2011, 196:3623.
[107] Chen Z H, Liu J, Amine K. Electrochem. Solid State Lett., 2007, 10:A45.

[1] 刘振东, 潘嘉杰, 刘全兵. 机器学习在设计高性能锂电池正极材料与电解质中的应用[J]. 化学进展, 2023, 35(4): 577-592.
[2] 岳昕阳, 包戬, 马萃, 吴晓京, 周永宁. 热熔灌输法制备三维骨架支撑金属锂复合负极[J]. 化学进展, 2022, 34(3): 683-695.
[3] 陈龙, 黄少博, 邱景义, 张浩, 曹高萍. 聚合物固态锂电池电解质/负极界面[J]. 化学进展, 2021, 33(8): 1378-1389.
[4] 李文涛, 钟海, 麦耀华. 锂二次电池中的原位聚合电解质[J]. 化学进展, 2021, 33(6): 988-997.
[5] 杨琪, 邓南平, 程博闻, 康卫民. 锂电池中的凝胶聚合物电解质[J]. 化学进展, 2021, 33(12): 2270-2282.
[6] 刘秋艳, 王雪锋, 王兆翔, 陈立泉. 高陶瓷含量复合固态电解质[J]. 化学进展, 2021, 33(1): 124-135.
[7] 陈嘉苗, 熊靖雯, 籍少敏, 霍延平, 赵经纬, 梁亮. 锂电池用全固态聚合物电解质[J]. 化学进展, 2020, 32(4): 481-496.
[8] 程新兵, 张强*. 金属锂枝晶生长机制及抑制方法[J]. 化学进展, 2018, 30(1): 51-72.
[9] 冯旭,何向明,蒲薇华,万春荣,姜长印. 锂电池正极材料FeS2[J]. 化学进展, 2008, 20(0203): 396-404.
[10] 赵吉诗,王,莉,何向明,姜长印,万春荣. 锂离子电池非水电解质中Li迁移特性[J]. 化学进展, 2007, 19(10): 1467-1474.
[11] 程琥 李涛 杨勇 . 锂/聚合物电解质电化学固/固界面的研究[J]. 化学进展, 2006, 18(05): 542-549.
[12] 赵峰,钱新明,汪尔康,董绍俊. 离子导电聚合物电解质的研究*[J]. 化学进展, 2002, 14(05): 374-.
阅读次数
全文


摘要

锂单离子导电固态聚合物电解质