English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 961-975 DOI: 10.7536/PC131207 前一篇   后一篇

• 综述与评论 •

铁基无机介孔材料

黎飞虎*1,2, 聂东阳1   

  1. 1. 南京信息工程大学环境科学与工程学院 江苏省环境净化材料工程技术研究中心 江苏省大气环境监测与污染控制重点实验室 南京 210044;
    2. Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720
  • 收稿日期:2013-11-01 修回日期:2014-01-01 出版日期:2014-06-15 发布日期:2014-03-10
  • 通讯作者: 黎飞虎 E-mail:fhli@nuist.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 51002080,51310105009)、国家留学基金委项目(No. 2011832032)和江苏高校优势学科建设工程项目资助

Iron-Based Inorganic Mesoporous Materials

Li Feihu*1,2, Nie Dongyang1   

  1. 1. School of Environmental Science and Engineering, Nanjing University of Information Science & Technology, Jiangsu Engineering Technology Center for Environmental Purification Materials Research, Jiangsu Key Lab of Atmospheric Environment Monitor and Pollution Control, Nanjing 210044, China;
    2. Earth Science Division, Lawrence Berkeley National Laboratory, Berkeley, CA 94720, U. S. A.
  • Received:2013-11-01 Revised:2014-01-01 Online:2014-06-15 Published:2014-03-10
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 51002080, 51310105009), the China Scholorship Council(CSC) program(No.2011832032) and the Priority Academic Program Development of Jiangsu Higher Education Institutions (PAPD)

铁基无机介孔材料因其环境友好、成本低廉及独特磁性与化学活性等优点而备受关注,并在众多领域展现出巨大的应用前景。本文综述了近年来铁基无机介孔材料的合成及其应用研究,重点归纳评述了各类铁基无机介孔材料(如介孔水合氧化铁、介孔氧化铁、介孔硅酸铁、介孔磷酸铁、铁基介观晶体、Fe/Si(C、Al、Ti)复合物等)的制备技术和结构特性;概括并讨论了铁基无机介孔材料在催化、吸附、气体传感、锂离子电池、医药、主客体合成等领域的应用技术;分析了目前铁基无机介孔材料研究存在的问题并总结了未来的研究方向。

Iron-base inorganic mesoporous materials have attracted a lot of attentions recently due to their environmental-benignancy, cost-efficiency, and unique properties of magnetism and chemical activity, which allow them to find potential applications in different areas. In this paper, the recent progress in synthesis of iron-based inorganic mesoporous materials as well as their applications has been reviewed, with an emphasis on the synthetic routes and structural properties of various iron-based inorganic mesoporous materials (i.e., mesoporous iron oxyhydroxides, mesoporous iron oxides, mesoporous ferrosilicates, mesoporous iron phosphates, iron-based mesocrystals, mesoporous Fe/Si (C, Al, Ti) composites, etc.). In addition, their applications in catalysis, adsorption, gas-sensing, lithium-ion batteries, pharmacies, host-guest synthesis and other fields have been summarized and discussed. The current research problems of iron-based inorganic mesoporous materials and several future research directions have also been addressed.

Contents
1 Introduction
2 Synthesis of iron-based mesoporous materials
2.1 Mesoporous iron oxyhydroxides (MIHs)
2.2 Mesoporous iron oxides (MIOs)
2.3 Mesoporous ferrosilicates (MFSs)
2.4 Mesoporous iron phosphates (MIPs)
2.5 Iron-based mesocrytals (IMCs)
2.6 Mesoporous Fe/Si (C, Al, Ti) composites
2.7 Other iron-based mesoporous materials
3 Applications of iron-based mesoporous materials
3.1 Catalysis
3.2 Adsorption
3.3 Gas-sensing
3.4 Li-ion batteries
3.5 Pharmacies
3.6 Host-guest synthesis
3.7 Other applications
4 Summary

中图分类号: 

()

[1] Ying J Y, Mehnert C P, Wong M S. Angew. Chem. Int. Ed., 1999, 38: 56.
[2] Ciesla U, Schuth F. Micropor. Mesopor. Mat., 1999, 27: 131.
[3] Schuth F. Chem. Mat., 2001, 13: 3184.
[4] Cornell R M, Schwertmann U. The Iron Oxides: Structure, Properties, Reactions, Occurences and Uses. 2nd ed. Weinheim, FRG: Wiley-VCH Verlag GmbH & Co. KGaA, 2004. 3.
[5] Srivastava D N, Perkas N, Gedanken A, Felner I. J. Phys. Chem. B, 2002, 106: 1878.
[6] Malik A S, Duncan M J, Bruce P G. J. Mater. Chem., 2003, 13: 2123.
[7] Jiao F, Bruce P G. Angew. Chem. Int. Ed., 2004, 43: 5958.
[8] Jiao F, Harrison A, Jumas J C, Chadwick A V, Kockelmann W, Bruce P G. J. Am. Chem. Soc., 2006, 128: 5468.
[9] Jiao F, Jumas J C, Womes M, Chadwick A V, Harrison A, Bruce P G. J. Am. Chem. Soc., 2006, 128: 12905.
[10] Ren Y, Ma Z, Bruce P G. Chem. Soc. Rev., 2012, 41: 4909.
[11] 张玉(Zhang Y), 张卫民(Zhang W M), 孙中溪(Sun Z X). 化学进展(Progress in Chemistry), 2007, 19: 1503.
[12] Hackley V A, Anderson M A. Journal of Membrane Science, 1992, 70: 41.
[13] Duraes L, Moutinho A, Seabra I J, Costa B F O, de Sousa H C, Portugal A. Mater. Chem. Phys., 2011, 130: 548.
[14] Li F H, Fu H, Zhai J P, Li Q. Micropor. Mesopor. Mat., 2009, 123: 177.
[15] Wu Z C, Zhang M, Yu K, Zhang S D, Xie Y. Chem. Eur. J., 2008, 14: 5346.
[16] Mathew T, Suzuki K, Nagai Y, Nonaka T, Ikuta Y, Takahashi N, Suzuki N, Shinjoh H. Chem. Eur. J., 2011, 17: 1092.
[17] Fuertes A B. J. Phys. Chem. Solids, 2005, 66: 741.
[18] Tuysuz H, Salabas E L, Weidenthaler C, Schuth F. J. Am. Chem. Soc., 2008, 130: 280.
[19] 董玉明(Dong Y M),蒋平平(Jiang P P),张爱民(Zhang A M).无机化学学报(Chinese Journal of Inorganic Chemistry)2009,25(9): 1595.
[20] Li Z Z, Zhang T, Li K. Dalton Trans., 2011, 40: 2062.
[21] Colomer M T, Zenzinger K. Micropor. Mesopor. Mat., 2012, 161: 123.
[22] Patra A K, Dutta A, Bhaumik A. ACS Applied Materials & Interfaces, 2012, 4: 5022.
[23] Mehendale B, Shende R, Subramanian S, Gangopadhyay S, Redner P, Kapoor D, Nicolich S. J. Energ. Mater., 2006, 24: 341.
[24] Liu Q, Zhang W M, Cui Z M, Zhang B, Wan L J, Song W G. Micropor. Mesopor. Mat., 2007, 100: 233.
[25] Izumi Y, Masih D, Aika K, Seida Y. Micropor. Mesopor. Mat., 2006, 94: 243.
[26] Ahmmad B, Leonard K, Islam M S, Kurawaki J, Muruganandham M, Ohkubo T, Kuroda Y. Adv. Powder Technol., 2013, 24: 160.
[27] LaTempa T J, Feng X, Paulose M, Grimes C A. Journal of Physical Chemistry C, 2009, 113: 16293.
[28] Yuan Z Y, Liu S Q, Chen T H, Wang J Z, Li H X. J. Chem. Soc. Chem. Commun., 1995, 973.
[29] He N Y, Bao S L, Xu Q H. Studies in Surface Science and Catalysis, 1997, 105: 85.
[30] Echchahed B, Moen A, Nicholson D, Bonneviot L. Chem. Mat., 1997, 9: 1716.
[31] Tuel A, Arcon I, Millet J M M. J. Chem. Soc. Faraday Trans., 1998, 94: 3501.
[32] Yuan Z Y, Chen T H, Wang J Z, Li H X. Chin. Chem. Lett., 1996, 7: 1057.
[33] Kuang Y P, He N Y, Wang J, Xiao P F, Yuan C W, Lu Z H. Colloid Surf. A Physicochem. Eng. Asp., 2001, 179: 177.
[34] Xu J, Kevan L. Appl. Magn. Reson., 2001, 20: 3.
[35] Pasqua L, Testa F, Aiello R, di Renzo F, Fajula F. Micropor. Mesopor. Mat., 2001, 44: 111.
[36] 曹洁明(Cao J M), 董家禄(Dong J L), 须沁华(Xu Q H). 化学学报(Acta Chim. Sin.), 2000, 58: 75.
[37] Martinez F, Han Y J, Stucky G, Sotelo J L, Ovejero G, Melero J A. Studies in Surface Science and Catalysis, 2002, 142: 1109.
[38] Li Y, Guan Y J, van Santen R A, Kooyman P J, Dugulan I, Li C, Hensen E J M. J. Phys. Chem. C, 2009, 113: 21831.
[39] Bourlinos A B, Karakassides M A, Petridis D. J. Phys. Chem. B, 2000, 104: 4375.
[40] Yu D H, Qian J S, Xue N H, Zhang D Y, Wang C Y, Guo X F, Ding W P, Chen Y. Langmuir, 2007, 23: 382.
[41] Yu D H, Wu C, Kong Y, Xue N H, Guo X F, Ding W P. J. Phys. Chem. C, 2007, 111: 14394.
[42] Zhu S M, Zhou H S, Miyoshi T, Hibino M, Honma I, Ichihara M. Adv. Mater., 2004, 16: 2012.
[43] Santos-Pena J, Soudan P, Aren C, Palomino G, Franger S. J. Solid State Electrochem., 2006, 10: 1.
[44] Gerbaldi C, Meligrana G, Bodoardo S, Tuel A, Penazzi N. J. Power Sources, 2007, 174: 501.
[45] Shi Z C, Attia A, Ye W L, Wang Q, Li Y X, Yang Y. Electrochim. Acta, 2008, 53: 2665.
[46] Koleva V, Zhecheva E, Stoyanova R. J. Alloy. Compd., 2009, 476: 950.
[47] Saravanan K, Reddy M V, Balaya P, Gong H, Chowdari B V R, Vittal J J. J. Mater. Chem., 2009, 19: 605.
[48] Zhou W J, He W, Zhang X D, Sun X N, Han X X. Mater. Chem. Phys., 2009, 116: 319.
[49] Qian J F, Zhou M, Cao Y L. J. Phys. Chem. C, 2010, 114: 3477.
[50] Wang G X, Liu H, Liu J, Qiao S Z, Lu G Q M, Munroe P, Ahn H. Adv. Mater., 2010, 22: 4944.
[51] Zhang B, Wang X J, Liu Z J, Li H, Huang X J. J. Electrochem. Soc., 2010, 157: A285.
[52] Hill M R, Wilson G J, Bourgeois L, Pandolfo A G. Energy Environ. Sci., 2011, 4: 965.
[53] Lee Y J, Belcher A M. J. Mater. Chem., 2011, 21: 1033.
[54] Vu A, Stein A. Chem. Mat., 2011, 23: 3237.
[55] Xia Y, Zhang W K, Huang H, Gan Y P, Tian J, Tao X Y. J. Power Sources, 2011, 196: 5651.
[56] Zhang B, Wang X J, Li H, Huang X J. J. Power Sources, 2011, 196: 6992.
[57] Bai P, Bazant M Z. Nat. Commun., 2014, 5: 3585.
[58] Cai R, Du Y P, Zhang W Y, Zhang H, Yan Q Y.. Chem. Eur. J., 2013, 19: 1568.
[59] Chen L, Wu P, Xie K W, Li J P, Xu B, Cao G P, Chen Y, Tang Y W, Zhou Y M, Lu T H, Yang Y S. Electrochim. Acta, 2013, 92: 433.
[60] Wang F Q, Chen J, Wu M H, Yi B L. Ionics, 2013, 19: 451.
[61] Lin R H, Ding Y J. Materials, 2013, 6: 217.
[62] Guo X F, Ding W P, Wang X S, Yan Q J. Chem. Lett., 2000, 1368.
[63] Shi Z C, Li Y X, Ye W L, Yang Y. Electrochem. Solid State Lett., 2005, 8: A396.
[64] Luo X Z, Imae T. Chem. Lett., 2005, 34: 1132.
[65] Du Y C, Yang Y, Liu S, Xiao N, Zhang Y L, Xiao F S. Micropor. Mesopor. Mat., 2008, 114: 250.
[66] Guo X F, Ding W P, Wang X G, Yan Q J. Chem. Commun., 2001, 709.
[67] Zhu S M, Zhou H S, Hibino M, Honma I. Chem. Lett., 2004, 33: 774.
[68] Yuan Z Y, Su B L. Chem. Phys. Lett., 2003, 381: 710.
[69] Yuan Z Y, Ren T Z, Su B L. Catal. Today, 2004, 93/95: 743.
[70] Long J W, Logan M S, Rhodes C P, Carpenter E E, Stroud R M, Rolison D R. J. Am. Chem. Soc., 2004, 126: 16879.
[71] Zhou W, Lin L J, Wang W J, Zhang L L, Wu Q O, Li J H, Guo L. J. Phys. Chem. C, 2011, 115: 7126.
[72] Bilecka I, Hintennach A, Djerdj I, Novak P, Niederberger M. Journal of Materials Chemistry, 2009, 19: 5125.
[73] Uchiyama H, Imai H. Crystal Growth & Design, 2010, 10: 1777.
[74] Zhu W C, Cui X L, Liu X F, Zhang L Y, Huang J Q, Piao X L, Zhang Q. Nanoscale Res. Lett., 2013, 8: 2.
[75] Cai J G, Chen S Y, Hu J, Wang Z, Ma Y R, Qi L M. CrystEngComm, 2013, 15: 6284.
[76] Ma J M, Teo J, Mei L, Zhong Z Y, Li Q H, Wang T H, Duan X C, Lian J B, Zheng W J. Journal of Materials Chemistry, 2012, 22: 11694.
[77] Disch S, Wetterskog E, Hermann R P, Salazar-Alvarez G, Busch P, Bruckel T, Bergstrom L, Kamali S. Nano Letters, 2011, 11: 1651.
[78] Yao Q Z, Guan Y B, Zhou G T. European Journal of Mineralogy, 2012, 24: 519.
[79] Decyk P, Trejda M, Ziolek M. C. R. Chim., 2005, 8: 635.
[80] 蓝国钧(Lan G J), 颜宇(Yan Y), 刘会君(Liu H J), 李瑛(Li Y). 化学通报(Chemistry), 2011, 74(1):32.
[81] Froba M, Kohn R, Bouffaud G, Richard O, van Tendeloo G. Chem. Mat., 1999, 11: 2858.
[82] Huwe H, Froba M. Micropor. Mesopor. Mat., 2003, 60: 151.
[83] Huwe H, Froba M. Carbon, 2007, 45: 304.
[84] Cannas C, Musu E, Musinu A, Piccaluga G, Spano G. J. Non-Cryst. Solids, 2004, 345: 653.
[85] Li F H. Micropor. Mesopor. Mat., 2013, 171: 139.
[86] Wang X X, Wang Y, Tang Q H, Guo Q A, Zhang Q H, Wan H L. J. Catal., 2003, 217: 457.
[87] Wang Y, Wang X X, Su Z, Guo Q, Tang Q H, Zhang Q H, Wan H L. Catal. Today, 2004, 93/95: 155.
[88] Hodgkins R P, Ahniyaz A, Parekh K, Belova L M, Bergstrom L. Langmuir, 2007, 23: 8838.
[89] Ursachi I, Vasile A, Ianculescu A, Vasile E, Stancu A. Mater. Chem. Phys., 2011, 130: 1251.
[90] Wang Y, Zhang Q H, Shishido T, Takehira K. J. Catal., 2002, 209: 186.
[91] Kawabata T, Ohishi Y, Itsuki S, Fujisaki N, Shishido T, Takaki K, Zhang Q H, Wang Y, Takehira K. J. Mol. Catal. A Chem., 2005, 236: 99.
[92] Xu X D, Xu H L, Kapteijn F, Moulijn J A. Appl. Catal. B Environ., 2004, 53: 265.
[93] Holland B T, Walkup C, Stein A. J. Phys. Chem. B, 1998, 102: 4301.
[94] Li J S, Gu J, Li H J, Liang Y, Hao Y X, Sun X Y, Wang L J. Micropor. Mesopor. Mat., 2010, 128: 144.
[95] Wang R Q, Lin R H, Ding Y J, Liu J, Wang J H, Zhang T. Appl. Catal. A Gen., 2013, 453: 235.
[96] Dong X P, Chen H R, Zhao W R, Li X, Shi J L. Chem. Mat., 2007, 19: 3484.
[97] Wang X F, Liu P, Tian Y, Zang L Q. Micropor. Mesopor. Mat., 2011, 145: 98.
[98] Zhang L X, Hua Z L, Dong X P, Li L, Chen H R, Shi J L. J. Mol. Catal. A Chem., 2007, 268: 155.
[99] Trejda M, Kujawa J, Ziolek M. Catal. Lett., 2006, 108: 141.
[100] Katok K V, Tertykh V A, Brichka S Y, Prikhod'ko G P. Mater. Chem. Phys., 2006, 96: 396.
[101] Schneider J J, Czap N, Hagen J, Engstler J, Ensling J, Gutlich P, Reinoehl U, Bertagnolli H, Luis F, de Jongh L J, Wark M, Grubert G, Hornyak G L, Zanoni R. Chem. Eur. J., 2000, 6: 4305.
[102] Fan H J, Xu Q, Guo Y Q, Cao Y X. Ind. Eng. Chem. Res., 2006, 45: 5009.
[103] Bandyopadhyay P, Sathe M, Prasad G K, Sharma P, Kaushik M P. J. Mol. Catal. A Chem., 2011, 341: 77.
[104] Zhang Y H, Reller A. J. Mater. Chem., 2001, 11: 2537.
[105] Perkas N, Palchik O, Brukental I, Nowik I, Gofer Y, Koltypin Y, Gedanken A. J. Phys. Chem. B, 2003, 107: 8772.
[106] Zhou M H, Yu J G, Cheng B. J. Hazard. Mater., 2006, 137: 1838.
[107] Ma W F, Zhang Y, Li L L, You L J, Zhang P, Zhang Y T, Li J M, Yu M, Guo J, Lu H J, Wang C C. ACS Nano, 2012, 6: 3179.
[108] Patra A K, Dutta A, Bhaumik A. Chem. Eur. J., 2013, 19: 12388.
[109] Li C L, Gu L, Tong J W, Tsukimoto S, Maier J. Adv. Funct. Mater., 2011, 21: 1391.
[110] Lu Y, Wen Z Y, Rui K, Wu X W, Cui Y M. J. Power Sources, 2013, 244: 306.
[111] Gbel R, Xie Z L, Neumann M, Gunter C, Lobbicke R, Kubo S, Titirici M M, Giordano C, Taubert A. CrystEngComm, 2012, 14: 4946.
[112] Kraupner A, Antonietti M, Palkovits R, Schlicht K, Giordano C. J. Mater. Chem., 2010, 20: 6019.
[113] Das S K, Nandi M, Giri S, Bhaumik A. Micropor. Mesopor. Mat., 2009, 117: 362.
[114] Sun Y Y, Ji G B, Zheng M B, Chang X F, Li S D, Zhang Y. J. Mater. Chem., 2010, 20: 945.
[115] Yen H, Seo Y, Guillet-Nicolas R, Kaliaguine S, Kleitz F. Chem. Commun., 2011, 47: 10473.
[116] Tuysuz H, Salabas E L, Bill E, Bongard H, Spliethoff B, Lehmann C W, Schuth F. Chem. Mat., 2012, 24: 2493.
[117] Amini E, Rezaei M, Sadeghinia M. Chin. J. Catal., 2013, 34: 1762.
[118] Li B, Li M, Yao C H, Shi Y F, Ye D R, Wu J, Zhao D Y. Journal of Materials Chemistry A, 2013, 1: 6742.
[119] Lv L L, Xu Q, Ding R, Qi L, Wang H Y. Mater. Lett., 2013, 111: 35.
[120] Wang Y, Zhao H, Li M, Fan J, Zhao G. Applied Catalysis B: Environmental, 2014, 147: 534.
[121] Zhang Y, Liu Y, Li M Z, Lu S Z, Wang J N. Ceram. Int., 2013, 39: 6591.
[122] Schuth F, Wingen A, Sauer J. Micropor. Mesopor. Mat., 2001, 44: 465.
[123] Pereira M C, Oliveira L C A, Murad E. Clay Min., 2012, 47: 285.
[124] Liu C B, Ye X K, Wu Y. Catal. Lett., 1996, 36: 263.
[125] Schuth F. Annual Review of Materials Research, 2005, 35: 209.
[126] Yue W B, Zhou W Z. Prog. Nat. Sci., 2008, 18: 1329.
[127] Cao J M, He N Y, Li C, Dong J L, Xu Q H. Studies in Surface Science and Catalysis, 1998, 117: 461.
[128] Bachari K, Millet J M M, Benaichouba B, Cherifi O, Figueras F. J. Catal., 2004, 221: 55.
[129] Crowther N, Larachi F. Appl. Catal. B Environ., 2003, 46: 293.
[130] He N Y, Bao S L, Xu Q H. Appl. Catal. A Gen., 1998, 169: 29.
[131] Thitsartarn W, Gulari E, Wongkasemjit S. Appl. Organomet. Chem., 2008, 22: 97.
[132] Choi J S, Yoon S S, Jang S H, Ahn W S. Catal. Today, 2006, 111: 280.
[133] Zhao W, Luo Y F, Deng P, Li Q Z. Catal. Lett., 2001, 73: 199.
[134] Gokulakrishnan N, Pandurangan A, Sinha P K. J. Chem. Technol. Biotechnol., 2007, 82: 25.
[135] Vinu A, Krithiga T, Balasubramanian V V, Asthana A, Srinivasu P, Mori T, Ariga K, Ramanath G, Ganesan P G. J. Phys. Chem. B, 2006, 110: 11924.
[136] Anand C, Srinivasu P, Alam S, Balasubramanian V V, Sawant D P, Palanichamy M, Murugesan V, Vinu A. Micropor. Mesopor. Mat., 2008, 111: 72.
[137] Liu S, Du Y C, Xiao N, Zhang Y L, Ji Y Y, Xiao F S. Chin. J. Catal., 2008, 29: 468.
[138] Calleja G, Melero J A, Martinez F, Molina R. Water Res., 2005, 39: 1741.
[139] Xin H C, Liu J, Fan F T, Feng Z C, Jia G Q, Yang Q H, Li C. Micropor. Mesopor. Mat., 2008, 113: 231.
[140] Reyes-Carmona A, Soriano M D, Nieto J M L, Jones D J, Jimenez-Jimenez J, Jimenez-Lopez A, Rodriguez-Castellon E. Catal. Today, 2013, 210: 117.
[141] Anand C, Priya S V, Lawrence G, Dhawale D S, Varghese S, Wahab M A, Prasad K S, Vinu A. Catal. Today, 2013, 204: 125.
[142] Sirotin S V, Moskovskaya I F, Romanovsky B V. Catal. Sci. Technol., 2011, 1: 971.
[143] Elias V, Vaschetto E, Sapag K, Oliva M, Casuscelli S, Eimer G. Catal. Today, 2011, 172: 58.
[144] Martinez F, Calleja G, Melero J A, Molina R. Appl. Catal. B Environ., 2005, 60: 181.
[145] Du Y C, Liu S, Ji Y Y, Zhang Y L, Liu F J, Gao Q, Xiao F S. Catal. Today, 2008, 131: 70.
[146] Botas J A, Melero J A, Martinez F, Pariente M I. Catal. Today, 2010, 149: 334.
[147] Melero J A, Calleja G, Martinez F, Molina R. Catal. Commun., 2006, 7: 478.
[148] Molina R, Martinez F, Melero J A, Bremner D H, Chakinala A G. Appl. Catal. B Environ., 2006, 66: 198.
[149] Martinez F, Calleja G, Melero J A, Molina R. Appl. Catal. B Environ., 2007, 70: 452.
[150] Szegedi A, Popova M, Lazar K, Klebert S, Drotar E. Micropor. Mesopor. Mat., 2013, 177: 97.
[151] Nozaki C, Lugmair C G, Bell A T, Tilley T D. J. Am. Chem. Soc., 2002, 124: 13194.
[152] Perkas N, Wang Y Q, Koltypin Y, Gedanken A, Chandrasekaran S. Chem. Commun., 2001, 988.
[153] Parida K M, Pradhan G K. Mater. Chem. Phys., 2010, 123: 427.
[154] Kim T W, Ha H W, Paek M J, Hyun S H, Baek I H, Choy J H, Hwang S J. J. Phys. Chem. C, 2008, 112: 14853.
[155] Mahmoud M H H, Ismail A A, Sanad M M S. Chem. Eng. J., 2012, 187: 96.
[156] Parida K M, Sahu N, Mohapatra P, Scurrell M S. J. Mol. Catal. A Chem., 2010, 319: 92.
[157] Pillai U R, Sahle-Demessie E. Chem. Commun., 2004, 826.
[158] Ren Y, Ma Z, Qian L P, Dai S, He H Y, Bruce P G. Catal. Lett., 2009, 131: 146.
[159] Liu Q, Cui Z M, Ma Z, Bian S W, Song W G, Wan L J. Nanotechnology, 2007, 18: 385605.
[160] Goncalves R H, Lima B H R, Leite E R. J. Am. Chem. Soc., 2011, 133: 6012.
[161] Xu J S, Zhu Y J. CrystEngComm, 2012, 14: 2702.
[162] Yokoi T, Tatsumi T, Yoshitake H. Studies in Surface Science and Catalysis, 2003, 146: 531.
[163] Gu Z M, Deng B L, Yang J. Micropor. Mesopor. Mat., 2007, 102: 265.
[164] Zhou W, Fu H G, Pan K, Tian C G, Qu Y, Lu P P, Sun C C. J. Phys. Chem. C, 2008, 112: 19584.
[165] Sun X F, Hu C, Qu J H. Desalin. Water Treat., 2009, 8: 139.
[166] Asuha S, Zhao Y M, Zhao S, Deligeer W. Solid State Sci., 2012, 14: 833.
[167] De Sousa A F, Braga T P, Gomes E C C, Valentini A, Longhinotti E. Chem. Eng. J., 2012, 210: 143.
[168] Kim J H, Kim J H, Bokare V, Kim E J, Chang Y Y, Chang Y S. J. Nanopart. Res., 2012, 14: 1010.
[169] Zuo J C, Tong S R, Yu X L, Wu L Y, Cao C Y, Ge M F, Song W G. J. Hazard. Mater., 2012, 235: 336.
[170] Li G L, Lan J, Liu J Y, Jiang G B. J. Colloid Interface Sci., 2013, 405: 164.
[171] Li F H, Fu X R, Huang J, Zhai J P. Chem. Res. Chin. Univ., 2012, 28: 559.
[172] Seredych M, Bandosz T J. Langmuir, 2007, 23: 6033.
[173] Guo L M, Cui X Z, Li Y S, He Q J, Zhang L X, Bu W B, Shi J L. Chem. Asian J., 2009, 4: 1480.
[174] 邢伟(Xing W), 禚淑萍(Zhuo S P), 司维江(Si W J), 袁勋(Yuan X). 化学学报(Acta Chim. Sin.), 2009, 67: 761.
[175] Zhu Y F, Kockrick E, Kaskel S, Ikoma T, Hanagata N. J. Phys. Chem. C, 2009, 113: 5998.
[176] Asuha S, Gao Y W, Deligeer W, Yu M, Suyala B, Zhao S. J. Porous Mat., 2011, 18: 581.
[177] Vilarrasa-Garcia E, Azevedo D C S, Braos-Garcia P, Infantes-Molina A, Cavalcante C L, Jimenez-Jimenez J, Jimenez-Lopez A, Rodriguez-Castellon E. Adsorpt. Sci. Technol., 2011, 29: 691.
[178] Lim S H, Woo E J, Lee H, Lee C H. Appl. Catal. B-Environ., 2008, 85: 71.
[179] Zhou Y, Yang J, Yang J Y, Gu F N, Wang Y, Zhu J H. J. Mater. Chem., 2011, 21: 13895.
[180] Chen X Q, Lam K F, Zhang Q J, Pan B C, Arruebo M, Yeung K L. J. Phys. Chem. C, 2009, 113: 9804.
[181] Chen B, Zhu Z L, Guo Y W, Qiu Y L, Zhao J F. J. Colloid Interf. Sci., 2013, 398: 142.
[182] Wu Z C, Yu K, Zhang S D, Xie Y. J. Phys. Chem. C, 2008, 112: 11307.
[183] Chen H M, Zhao Y Q, Yang M Q, He J H, Chu P K, Zhang J, Wu S H. Anal. Chim. Acta, 2010, 659: 266.
[184] Hao Q Y, Liu S A, Yin X M, Wang Y G, Li Q H, Wang T H. Solid State Sci., 2010, 12: 2125.
[185] Sun B, Horvat J, Kim H S, Kim W S, Ahn J, Wang G X. J. Phys. Chem. C, 2010, 114: 18753.
[186] Hao Q Y, Liu S A, Yin X M, Du Z F, Zhang M, Li L M, Wang Y G, Wang T H, Li Q H. CrystEngComm, 2011, 13: 806.
[187] Mao D, Yao J X, Lai X Y, Yang M, Du J A, Wang D. Small, 2011, 7: 578.
[188] Yuan Q, Li N, Geng W C, Chi Y, Tu J C, Li X T, Shao C L. Sens. Actuator B Chem., 2011, 160: 334.
[189] Wang Y, Cao J L, Yu M G, Sun G, Wang X D, Bala H, Zhang Z Y. Mater. Lett., 2013, 100: 102.
[190] Brezesinski K, Haetge J, Wang J, Mascotto S, Reitz C, Rein A, Tolbert S H, Perlich J, Dunn B, Brezesinski T. Small, 2011, 7: 407.
[191] Kang E, Jung Y S, Cavanagh A S, Kim G H, George S M, Dillon A C, Kim J K, Lee J. Adv. Funct. Mater., 2011, 21: 2430.
[192] Yoon T, Chae C, Sun Y K, Zhao X, Kung H H, Lee J K. J. Mater. Chem., 2011, 21: 17325.
[193] Xiao Z, Xia Y, Ren Z H, Liu Z Y, Xu G, Chao C Y, Li X, Shen G, Han G R. J. Mater. Chem., 2012, 22: 20566.
[194] Xu J S, Zhu Y J. ACS Applied Materials & Interfaces, 2012, 4: 4752.
[195] 徐科(Xu K),申来法(Shen L F),米常焕(Mi C H),张校刚(Zhang X G). 物理化学学报(Acta Phys. Chim. Sin.),2012, 28(1), 105.
[196] Yuan S M, Li J X, Yang L T, Su L W, Liu L, Zhou Z. ACS Applied Materials & Interfaces, 2011, 3: 705.
[197] 王炎(Wang Y),郑旭翰(Zheng X H),姜兆华(Jiang Z H). 化 学 进 展(Progress in Chemistry)2006,18(10):1345.
[198] Ruiz-Hernandez E, Lopez-Noriega A, Arcos D, Izquierdo-Barba I, Terasaki O, Vallet-Regi M. Chem. Mat., 2007, 19: 3455.
[199] Zhu S M, Zhou Z Y, Zhang D. ChemPhysChem, 2007, 8: 2478.
[200] Thomas C R, Ferris D P, Lee J H, Choi E, Cho M H, Kim E S, Stoddart J F, Shin J S, Cheon J, Zink J I. J. Am. Chem. Soc., 2010, 132: 10623.
[201] Wu H X, Zhang S J, Zhang J M, Liu G, Shi J L, Zhang L X, Cui X Z, Ruan M L, He Q J, Bu W B. Adv. Funct. Mater., 2011, 21: 1850.
[202] Yang P P, Quan Z W, Hou Z Y, Li C X, Kang X J, Cheng Z Y, Lin J. Biomaterials, 2009, 30: 4786.
[203] Liu Q, Zhang J X, Xia W L, Gu H C. Journal of Nanoscience and Nanotechnology, 2012, 12: 7709.
[204] Lu B Q, Zhu Y J, Ao H Y, Qi C, Chen F. ACS Applied Materials & Interfaces, 2012, 4: 6968.
[205] Zhang F, Braun G B, Pallaoro A, Zhang Y C, Shi Y F, Cui D X, Moskovits M, Zhao D Y, Stucky G D. Nano Letters, 2012, 12: 61.
[206] Zhang X F, Mansouri S, Clime L, Ly H Q, Yahia L H, Veres T. J. Mater. Chem., 2012, 22: 14450.
[207] Zhao C X, Yu L, Middelberg A P J. Journal of Materials Chemistry B, 2013, 1: 4828.
[208] Knezevic N Z, Slowing I I, Lin V S Y. ChemPlusChem, 2012, 77: 48.
[209] Lee J E, Lee N, Kim H, Kim J, Choi S H, Kim J H, Kim T, Song I C, Park S P, Moon W K, Hyeon T. J. Am. Chem. Soc., 2010, 132: 552.
[210] Xuan S H, Wang F, Lai J M Y, Sham K W Y, Wang Y X J, Lee S F, Yu J C, Cheng C H K, Leung K C F. ACS Applied Materials & Interfaces, 2011, 3: 237.
[211] Guo S J, Li D, Zhang L M, Li J, Wang E K. Biomaterials, 2009, 30: 1881.
[212] Li W Z, Xie S S, Qian L X, Chang B H, Zou B S, Zhou W Y, Zhao R A, Wang G. Science, 1996, 274: 1701.
[213] Ko J R, Ahn W S. Journal of Nanoscience and Nanotechnology, 2006, 6: 3442.
[214] Lo A Y, Yu N Y, Huang S J, Hung C T, Liu S H, Lei Z B, Kuo C T, Liu S B. Diam. Relat. Mat., 2011, 20: 343.
[215] Carta D, Casula M F, Corrias A, Falqui A, Dombovari A, Galos A, Konya Z. Journal of Nanoscience and Nanotechnology, 2011, 11: 6735.
[216] Kohno Y, Senga M, Shibata M, Yoda K, Matsushima R, Tomita Y, Maeda Y, Kobayashi K. Micropor. Mesopor. Mat., 2011, 141: 77.
[217] Chaikriangkrai A, Takeshita Y, Shibata M. Chem. Lett., 2011, 40: 693.
[218] Aboufazeli F, Zhad H R L Z, Sadeghi O, Karimi M, Najafi E. Food Chemistry, 2013, 141: 3459.
[219] Wu J W, Su P, Huang J, Wang S M, Yang Y. J. Colloid Interf. Sci., 2013, 399: 107.
[220] Duret A, Gratzel M. J. Phys. Chem. B, 2005, 109: 17184.
[221] Cummings C Y, Marken F, Peter L M, Wijayantha K G U, Tahir A A. J. Am. Chem. Soc., 2012, 134: 1228.
[222] Brillet J, Gratzel M, Sivula K. Nano Letters, 2010, 10: 4155.
[223] Barroso M, Mesa C A, Pendlebury S R, Cowan A J, Hisatomi T, Sivula K, Gratzel M, Klug D R, Durrant J R. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 15640.
[224] Boudjemaa A, Bachari K, Trari M. Materials Science in Semiconductor Processing, 2013, 16: 838.
[225] Lin Y, Zhou S, Sheehan S W, Wang D. J. Am. Chem. Soc., 2011, 133: 2398.

[1] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[2] 钟琴, 周帅, 王翔美, 仲维, 丁晨迪, 傅佳骏. 介孔二氧化硅基智能递送体系的构建及其在各类疾病治疗中的应用[J]. 化学进展, 2022, 34(3): 696-716.
[3] 赵筱茜, 王聪, 田勇, 王秀芳. 微乳液法制备介孔碳材料[J]. 化学进展, 2022, 34(10): 2316-2328.
[4] 刘陈, 李强翔, 张迪, 郦瑜杰, 刘金权, 肖锡林. MCM-41型介孔二氧化硅纳米颗粒的制备及其在DNA生物传感器中的应用[J]. 化学进展, 2021, 33(11): 2085-2102.
[5] 秦苗, 徐梦洁, 黄棣, 魏延, 孟延锋, 陈维毅. 氧化铁纳米颗粒在磁共振成像中的应用[J]. 化学进展, 2020, 32(9): 1264-1273.
[6] 施剑林, 华子乐. 无机纳米与多孔材料合成中的凝聚态化学[J]. 化学进展, 2020, 32(8): 1060-1075.
[7] 刘宁, 刘水林, 伍素云, 付琳, 吴智, 李来丙. 金属基介孔固体碱催化剂的制备与应用[J]. 化学进展, 2020, 32(5): 536-547.
[8] 何天稀, 王文斌, 王九, 陈波水, 梁琼麟. 介孔碳球的制备及作为药物传输系统的应用[J]. 化学进展, 2020, 32(2/3): 309-319.
[9] 英启炜, 廖建国, 吴民行, 翟智皓, 刘欣茹. 球形生物活性玻璃作为运输载体的研究[J]. 化学进展, 2019, 31(5): 773-782.
[10] 喻志超, 汤淳, 姚丽, 高庆, 徐祖顺, 杨婷婷. 聚合物基模板制备中空介孔材料[J]. 化学进展, 2018, 30(12): 1899-1907.
[11] 杜远超, 华政, 梁风, 李永梅, 戴永年, 姚耀春. 液相法合成磷酸铁锂正极材料[J]. 化学进展, 2017, 29(1): 137-148.
[12] 余响林, 陈小姣, 张碧玉, 饶聪, 何源, 黎俊波. 基于有序介孔材料的荧光探针及其应用[J]. 化学进展, 2016, 28(6): 896-907.
[13] 张凌峰, 胡忠攀, 高泽敏, 刘亚录, 袁忠勇. 有序介孔碳基金属复合材料的制备及催化应用[J]. 化学进展, 2015, 27(8): 1042-1056.
[14] 张晓东, 董寒, 王吟, 崔立峰. 有序介孔硅材料主-客体组装及应用研究[J]. 化学进展, 2015, 27(10): 1374-1383.
[15] 曾峰, 潘真真, 张梦, 黄永焯, 崔彦娜, 徐勤. 有序介孔二氧化硅纳米粒的制备及其肿瘤诊疗应用[J]. 化学进展, 2015, 27(10): 1356-1373.
阅读次数
全文


摘要

铁基无机介孔材料