English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 939-949 DOI: 10.7536/PC131160 前一篇   后一篇

所属专题: 锂离子电池

• 综述与评论 •

锂离子电池用高电位正极材料LiNi0.5Mn1.5O4

邓海福, 聂平, 申来法, 罗海峰, 张校刚*   

  1. 南京航空航天大学材料科学与技术学院 南京 210016
  • 收稿日期:2013-11-01 修回日期:2013-12-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 张校刚 E-mail:azhangxg@163.com
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No. 2014CB239701)、国家自然科学基金项目(No. 21173120,51372116)、江苏省自然科学基金项目(No.BK2011030)和中央高校基本科研业务费专项基金(No.NP2014403)资助

High Voltage Spinel-Structured LiNi0.5Mn1.5O4 as Cathode Materials for Li-Ion Batteries

Deng Haifu, Nie Ping, Shen Laifa, Luo Haifeng, Zhang Xiaogang*   

  1. College of Materials Science and Engineering, Nanjing University of Aeronautics and Astronautics, Nanjing 210016, China
  • Received:2013-11-01 Revised:2013-12-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the State Key Development Program for Basic Research of China (973 Program, No. 2014CB239701), the National Natural Science Foundation of China (No. 21173120, 51372116), the Natural Science Foundation of Jiangsu Province, China (No.BK2011030) and the Fundamental Research Funds for the Central Universities (No.NP2014403)

由于具有工作电压高、工作范围宽、比能量大、无污染、使用寿命长等优点,锂离子电池具有广阔的应用前景。 然而,目前商业化的锂离子电池仍无法满足电动汽车对电池低成本及高能量密度的要求。研发比能量更高、价格更低廉、寿命更长的锂离子电池成为电动汽车产业发展的关键。尖晶石结构的镍锰酸锂(LiNi0.5Mn1.5O4)具有三维扩散通道,有利于锂离子的传输,且结构稳定;其理论放电比容量可达147 mAh ·g-1。 更重要的是,其电压平台高达4.7 V,具有高的能量密度与功率密度,被认为是未来锂离子电池发展中最具前途与吸引力的正极材料之一。本文介绍了LiNi0.5Mn1.5O4的结构、制备方法、掺杂与包覆改性研究及其应用前景,着重介绍了材料的改性方法并指出LiNi0.5Mn1.5O4目前亟需解决的问题和研究重点。

Lithium ion batteries (LIBs) have been considered as promising energy storage devices in the past decades owing to their high operating voltage, large energy density and outstanding cycle performance. However, the currently commercial LIBs could not fulfill the demand of electric vehicles(EV) or hybrid electric vehicles(HEV) applications. Thence, superior electrode materials possessing either higher capacity or higher voltage have gained enormous interest. Taking this into account, spinel LiNi0.5Mn1.5O4 which owns high operating voltage, relatively high theoretical capacity (147 mAh ·g-1) and three-dimensional lithium ion transport channels has become one of the most excellent cathode materials. In the presented paper, the structure and synthesis of this material are reviewed, and special emphases are shown to the current research activities on LiNi0.5Mn1.5O4 cathodes in ion doping along with surface coating synthesized by various synthetic techniques. Finally, the key issues and prospects of the cathode material are commented.

Contents
1 Introduction
2 Structure of LiNi0.5Mn1.5O4 cathode material
3 Synthesis of LiNi0.5Mn1.5O4 cathode material
4 Problems of LiNi0.5Mn1.5O4 cathode material
5 Modification of LiNi0.5Mn1.5O4 cathode material
5.1 Ion doping
5.2 Surface modification
5.3 Other methods
6 Conclusions and outlook

中图分类号: 

()

[1] Meng X, Yang X, Sun X. Adv. Mater., 2012, 24: 3589.
[2] Choi N, Chen Z, Freunberger S A, Ji X, Sun Y, Amine K, Yushin G, Nazar L F, Cho J, Bruce P G. Angew. Chem. Int. Ed., 2012, 51: 9994.
[3] Dathar G K P, Sheppard D, Stevenson K J, Henkelman G. Chem. Mater., 2011, 23: 4032.
[4] Yang J, Tse J S. J. Mater. Chem. A, 2011, 115: 13045.
[5] Bruce P G, Freunberger S A, Hardwick L J, Tarascon J. Nat. Mater., 2011, 11: 19.
[6] Aravindan V, Sundaramurthy J, Kumar P S, Shubha N, Ling W C, Ramakrishna S, Madhavi S. Nanoscale, 2013, 5: 10636.
[7] Mohanty D, Sefat A S, Li J L, Meisner R A, Rondinone A J, Payzant E A, Abraham D P, Wood D L Ⅲ, Daniel C. Phys. Chem. Chem. Phys., 2013, 15: 19496.
[8] Lee H, Muralidharan P, Ruffo R, Mari C M, Cui Y, Kim D K. Nano Lett., 2010, 10: 3852.
[9] Waals K A, Johnson C S, Genthe J, Stoiber L C, Zeltner W A, Anderson M A, Thackeray M M. J. Power Sources, 2010, 195: 4943.
[10] Talik E, Lipinska L, Zajdel P, Zal O G A, Michalska M, Guzik A. J. Solid State Chem. Fran., 2013, 206: 257.
[11] Jayapal S, Mariappan R, Piraman S. J. Solid State Electrochem., 2013, 10: 1.
[12] Wang C, Lu S, Kan S, Pang J, Jin W, Zhang X. J. Power Sources, 2009, 189: 607.
[13] Chemelewski K R, Shin D W, Li W, Manthiram A. J. Mater. Chem. A, 2013, 1: 3347.
[14] Lee E, Nam K, Hu E, Manthiram A. Chem. Mater., 2012, 24: 3610.
[15] Zhang X, Cheng F, Zhang K, Liang Y, Yang S, Liang J, Chen J. RSC Adv., 2012, 2: 5669.
[16] Liu D, Zhu W, Trottier J, Gagnon C, Barray F, Guerfi A, Mauger A, Groult H, Julien C M, Goodenough J B. RSC Adv., 2014, 4: 154.
[17] Zheng J, Xiao J, Yu X, Kovarik L, Gu M, Omenya F, Chen X, Yang X, Liu J, Graff G L. Phys. Chem. Chem. Phys., 2012, 14: 13515.
[18] Kim J H, Myung S T, Yoon C S, Kang S G, Sun Y K. Chem. Mater., 2004, 16: 906.
[19] Cho H, Meng Y S. J. Electrochem. Soc., 2013, 160: A1482.
[20] Amdouni N, Zaghib K, Gendron F, Mauger A, Julien C M. Ionics, 2006, 12: 117.
[21] Chen Z, Zhu H, Ji S, Linkov V, Zhang J, Zhu W. J. Power Sources, 2009, 189: 507.
[22] Zhu Z, Yan H, Zhang D, Li W, Lu Q. J. Power Sources, 2013, 224: 13.
[23] Xiao L, Zhao Y, Yang Y, Ai X, Yang H, Cao Y. J. Solid State Electrochem., 2008, 12: 687.
[24] Sun Y, Yang Y, Zhao X, Shao H. Electrochim. Acta, 2011, 56: 5934.
[25] Chang Z, Dai D, Tang H, Yu X, Yuan X, Wang H. Electrochim. Acta, 2010, 55: 5506.
[26] Zhao Q, Ye N, Li L, Yan F. Rare Metal Mater. Eng., 2010, 39: 1715.
[27] Zhu Z, Zhang D, Yan H, Li W. J. Mater. Chem. A, 2013, 1: 5492.
[28] Qian Y, Deng Y, Shi Z, Zhou Y, Zhuang Q, Chen G. Electrochem. Commun., 2013, 27: 92.
[29] Dong Y, Wang Z, Qin H, Sui X. RSC Adv., 2012, 2: 11988.
[30] Kim J H, Myung S T, Sun Y K. Electrochim. Acta, 2004, 49: 219.
[31] Hao X, Austin M H, Bartlett B M. Dalton Trans., 2012, 41: 8067.
[32] Liu J, Liu W, Ji S, Zhou Y, Hodgson P, Li Y. ChemPlusChem, 2013, 78: 636.
[33] Choi S H, Hong Y J, Kang Y C. Nanoscale, 2013, 5: 7867.
[34] Zhang X, Cheng F, Yang J, Chen J. Nano Lett., 2013, 13: 2822.
[35] Zhou L, Zhao D, Lou X D. Angew. Chem. Int. Ed., 2012, 124: 243.
[36] Duncan H, Duguay D, Abu-Lebdeh Y, Davidson I J. J. Electrochem. Soc., 2011, 158: A537.
[37] Alcántara R, Jaraba M, Lavela P, Tirado J L, Biensan P, de Guibert A, Jordy C, Peres J P. Chem. Mater., 2003, 15: 2376.
[38] Kim J, Myung S, Yoon C S, Oh I, Sun Y. J. Electrochem. Soc., 2004, 151: A1911.
[39] Alcántara R, Jaraba M, Lavela P, Tirado J L, Zhecheva E, Stoyanova R. Chem. Mater., 2004, 16: 1573.
[40] Liu G, Zhang L, Sun L, Wang L. Mater. Res. Bull., 2013, 48: 4960.
[41] Alcantara R, Jaraba M, Lavela P, Lloris J M, Vicente C P E R, Tirado J L. J. Electrochem. Soc., 2005, 152: A13.
[42] Liu J, Manthiram A. J. Phys. Chem. C, 2009, 113: 15073.
[43] Arunkumar T A, Manthiram A. Electrochem. Solid-State Lett., 2005, 8: A403.
[44] Yang M, Xu B, Cheng J, Pan C, Hwang B, Meng Y S. Chem. Mater., 2011, 23: 2832.
[45] Chemelewski K R, Manthiram A. J. Phys. Chem. C, 2013, 117: 12465.
[46] Alcantara R, Jaraba M, Lavela P, Tirado J L. J. Electrochem. Soc., 2004, 151: A53.
[47] Park S B, Eom W S, Cho W I, Jang H. J. Power Sources, 2006, 159: 679.
[48] Liu D, Hamel-Paquet J, Trottier J, Barray F, Gariépy V, Hovington P, Guerfi A, Mauger A, Julien C M, Goodenough J B, Zaghib K. J. Power Sources, 2012, 217: 400.
[49] Zhong G B, Wang Y Y, Zhang Z C, Chen C H. Electrochim. Acta, 2011, 56: 6554.
[50] Wang H, Xia H, Lai M O, Lu L. Electrochem. Commun., 2009, 11: 1539.
[51] Wang H, Tan T A, Yang P, Lai M O, Lu L. J. Phys. Chem. C, 2011, 115: 6102.
[52] Shin D W, Manthiram A. Electrochem. Commun., 2011, 13: 1213.
[53] Prabakar S J R, Han S C, Singh S P, Lee D K, Sohn K, Pyo M. J. Power Sources, 2012, 209: 57.
[54] Yi T, Ying X, Zhu Y, Zhu R, Ye M. J. Power Sources, 2012, 211: 59.
[55] Yi T, Chen B, Zhu Y, Li X, Zhu R. J. Power Sources, 2014, 247: 778.
[56] Wu P, Zeng X L, Zhou C, Gu G F, Tong D G. Mater. Chem. Phys., 2013, 138: 716.
[57] Oh S, Park S, Kim J, Bae Y C, Sun Y. J. Power Sources, 2006, 157: 464.
[58] Stroukoff K R, Manthiram A. J. Mater. Chem., 2011, 21: 10165.
[59] Sun Y, Sung W O, Yoon C S, Hyun J B, Prakash J. J. Power Sources, 2006, 161: 19.
[60] Shin D W, Bridges C A, Huq A, Paranthaman M P, Manthiram A. Chem. Mater., 2012, 24: 3720.
[61] Lee E, Manthiram A. J. Mater. Chem. A, 2013, 1: 3118.
[62] Sha O, Tang Z, Wang S, Yuan W, Qiao Z, Xu Q, Ma L. Electrochim. Acta, 2012, 77: 250.
[63] Le O N B, Lloris J E M, Vicente C P E R, Tirado J E L. Electrochem. Solid-State Lett., 2006, 9: A96.
[64] Sun Y, Hong K, Prakash J, Amine K. Electrochem. Commun., 2002, 4: 344.
[65] Fan Y, Wang J, Tang Z, He W, Zhang J. Electrochim. Acta, 2007, 52: 3870.
[66] Noguchi T, Yamazaki I, Numata T, Shirakata M. J. Power Sources, 2007, 174: 359.
[67] Wu H M, Belharouak I, Abouimrane A, Sun Y K, Amine K. J. Power Sources, 2010, 195: 2909.
[68] Liu J, Manthiram A. Chem. Mater., 2009, 21: 1695.
[69] Baggetto L I C, Unocic R R, Dudney N J, Veith G M. J. Power Sources, 2012, 211: 108.
[70] Kang H, Myung S, Amine K, Lee S, Sun Y. J. Power Sources, 2010, 195: 2023.
[71] Shi J Y, Yi C, Kim K. J. Power Sources, 2010, 195: 6860.
[72] Liu D, Bai Y, Zhao S, Zhang W. J. Power Sources, 2012, 219: 333.
[73] Li J, Zhang Y, Li J, Wang L, He X, Gao J. Ionics, 2011, 17: 671.
[74] Huang Y Y, Zeng X L, Zhou C, Wu P, Tong D G. J. Mater. Sci., 2013, 48: 625.
[75] Arrebola J, Caballero A, Hernan L, Morales J. Electrochem. Solid-State Lett., 2005, 8: A303.
[76] Arrebola J, Caballero A, Hernan L, Morales J, Castell O N E R I G, Barrado J R. J. Electrochem. Soc., 2007, 154: A178.
[77] Shen L, Li H, Uchaker E, Zhang X, Cao G. Nano Lett., 2012, 12: 5673.
[78] Yang T, Zhang N, Lang Y, Sun K. Electrochim. Acta, 2011, 56: 4058.
[79] Fang X, Ge M, Rong J, Zhou C. J. Mater. Chem. A, 2013, 1: 4083.
[80] Prabakar S R, Hwang Y, Lee B, Sohn K, Pyo M. J. Electrochem. Soc., 2013, 160: A832.
[81] Zhao G, Lin Y, Zhou T, Lin Y, Huang Y, Huang Z. J. Power Sources, 2012, 215: 63.
[82] Cho J, Park J, Lee M, Song H, Lee S. Energy Environ. Sci., 2012, 5: 7124.
[83] Li J, Baggetto L I C, Martha S K, Veith G M, Nanda J, Liang C, Dudney N J. Adv. Eng. Mater., 2013, 3: 1275.
[84] Chong J, Xun S, Song X, Liu G, Battaglia V S. Nano Eng., 2013, 2: 283.
[85] Cheng F, Xin Y, Huang Y, Chen J, Zhou H, Zhang X. J. Power Sources, 2013, 239: 181.
[86] Gong Y, Palacio D, Song X, Patel R L, Liang X, Zhao X, Goodenough J B, Huang K. Nano Lett., 2013, 13: 4340.
[87] Jung Y S, Cavanagh A S, Gedvilas L, Widjonarko N E, Scott I D, Lee S, Kim G, George S M, Dillon A C. Adv. Eng. Mater., 2012, 2: 1022.
[88] Liu D, Trottier J, Charest P, Fréchette J, Guerfi A, Mauger A, Julien C M, Zaghib K. J. Power Sources, 2012, 204: 127.
[89] Hagh N M, Cosandey F, Rangan S, Bartynski R, Amatucci G G. J. Electrochem. Soc., 2010, 157: A305.
[90] Park J S, Roh K C, Lee J, Song K, Kim Y, Kang Y. J. Power Sources, 2013, 230: 138.
[91] Saruwatari H, Ishikawa T, Korechika Y, Kitamura N, Takami N, Idemoto Y. J. Power Sources, 2011, 196: 10126.
[92] Jung H, Jang M W, Hassoun J, Sun Y, Scrosati B. Nat. Commun., 2011, 2: 516.
[93] Hassoun J, Lee K, Sun Y, Scrosati B. J. Am. Chem. Soc., 2011, 133: 3139.
[94] Wu F, Zhu Q, Li L, Chen R, Chen S. J. Mater. Chem. A, 2011, 1: 3659.
[95] Zhang Z, Hu L, Wu H, Weng W, Koh M, Redfern P C, Curtiss L A, Amine K. Energy Environ. Sci., 2013, 6: 1806.

[1] 高金伙, 阮佳锋, 庞越鹏, 孙皓, 杨俊和, 郑时有. 高电压锂离子正极材料LiNi0.5Mn1.5O4高温特性[J]. 化学进展, 2021, 33(8): 1390-1403.
[2] 鲁志远, 刘燕妮, 廖世军. 锂离子电池富锂锰基层状正极材料的稳定性[J]. 化学进展, 2020, 32(10): 1504-1514.
[3] 严武渭, 柳永宁, 崇少坤, 周亚萍, 刘建国, 邹志刚. 高能量密度锂离子电池用富锂正极材料[J]. 化学进展, 2017, 29(2/3): 198-209.
[4] 李敏, 王艳丽, 吴晓燕, 段磊, 张春明, 何丹农. 锂离子电池富锂材料中离子掺杂、表面包覆、表面氧空位修饰的作用机理及其联合机制[J]. 化学进展, 2017, 29(12): 1526-1536.
[5] 李秀娟, 曹云鹤, 华康, 王畅, 徐卫林, 方东. 钒氧基电极材料特点及其改性方法[J]. 化学进展, 2017, 29(10): 1260-1272.