English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 1065-1078 DOI: 10.7536/PC131155 前一篇   后一篇

• 综述与评论 •

检测硫化氢分子的荧光探针

高敏1,2, 于法标1, 陈令新*1   

  1. 1. 中国科学院海岸带环境过程与生态修复重点实验室 山东省海岸带环境工程技术研究中心 中国科学院 烟台海岸带研究所 烟台 264003;
    2. 曲阜师范大学化学与化工学院 曲阜 273165
  • 收稿日期:2013-11-01 修回日期:2014-01-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 陈令新 E-mail:lxchen@yic.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 21275158)、中国科学院重要方向性项目(No. KZCX2-EW-206)和中国科学院“百人计划”择优支持项目资助

Fluorescent Probes for Hydrogen Sulfide Detection

Gao Min1,2, Yu Fabiao1, Chen Lingxin*1   

  1. 1. Key Laboratory of Coastal Environmental Processes and Ecological Remediation, The Research Center for Coastal Environmental Engineering and Technology of Shandong Province, Yantai Institute of Coastal Zone Research, Chinese Academy of Sciences, Yantai 264003, China;
    2. College of Chemistry and Chemical Engineering, Qufu Normal University, Qufu 273165, China
  • Received:2013-11-01 Revised:2014-01-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supportted by the National Natural Science Foundation of China (No. 21275158), the Innovation Projects of the Chinese Academy of Sciences (No. KZCX2-EW-206), and the 100 Talents Program of the Chinese Academy of Sciences

硫化氢(H2S)是继一氧化碳和一氧化氮之后,第三种可在生命体内发挥生理作用的内源性气体信号分子。该气体分子在心血管和神经系统中担负着重要的生理病理调节作用。因此,选择性识别和高灵敏检测生物体内的H2S具有十分重要的生物医学意义。在生物检测技术手段中,荧光探针法具有选择性好、灵敏度高、对生物样品损伤小以及可实现实时原位检测等独特的优势,故应用荧光探针法检测细胞内H2S浓度的变化是近年来研究热点之一。本文依据荧光探针与H2S之间的化学反应类型,将近三年来所研发的H2S荧光探针按照其母体荧光团进行分类和总结,综述了H2S荧光探针的研究进展,概述了相关荧光探针的设计理念、检测机理及生物应用,探讨了探针的结构和性能之间的关系,最后展望了H2S荧光探针的发展趋势和应用前景。

Following carbon monoxide and nitric oxide, hydrogen sulfide (H2S) is found to be the third endogenous gasotransmitter, which provides the regulation significance of physiological and pathological processes in the cardiovascular and nervous systems. Therefore, the selective recognition and detection of H2S are of importance. Fluorescent probe method, among biological detection technologies, is an indispensable technique for the biological species analysis, and that is highlighted by its good selectivity, high sensitivity, noninvasive detection, and real-time monitoring in situ. Recently, the development of fluorescent probes for intracellular H2S detection has been becoming one of the hot topics. Herein, the progress during the last three years of fluorescent molecular probes based on the small molecules for H2S detection are reviewed. These fluorescent probes are classified and concluded according to the different types of chemical reaction with H2S, and then arranged specifically by the fluorophores in different type. The design concepts of molecular structures, detection mechanism and biological applications of these probes are introduced. In addition, the relationship between molecular structures and properties while testing are elucidated. Finally, the challenge and application prospects for the development of hydrogen sulfide fluorescent probes are also discussed.

Contents
1 Introduction
2 Chemical strategies to design H2S fluorescent probes
2.1 Detection of H2S via reduction reactions
2.2 Detection of H2S via nucleophilic addition reactions
2.3 Detection of H2S via copper-sulfide precipitation
2.4 Detection of H2S via thiolysis reactions
2.5 Detection of H2S via redox reactions
3 Fluorescent probes based on the reduction reaction
3.1 H2S probes employ coumarin dyes as fluorophore
3.2 H2S probes employ naphthalimide dyes as fluorophore
3.3 H2S probes employ rhodamine dyes as fluorophore
3.4 H2S probes employ near-infrared fluorescent (including two-photon) dyes as fluorophore
3.5 H2S probes employ other dyes as fluorophore
4 Fluorescent probes based on the nucleophilic addition
4.1 H2S probes employ BODIPY dyes as fluorophore
4.2 H2S probes employ fluorescein dyes as fluorophore
4.3 H2S probes employ benzothiazole dyes as fluorophore
4.4 H2S probes employ cyanine dyes as fluorophore
4.5 H2S probes employ other dyes as fluorophore
5 Fluorescent probes based on the Cu-S precipitation
5.1 H2S probes employ fluorescein dyes as fluorophore
5.2 H2S probes employ cyanine dyes as fluorophore
5.3 H2S probes employ other dyes as fluorophore
6 Fluorescent probes based on the thiolysis reaction
7 Fluorescent probes based on mimics selenium enzyme
8 Fluorescent probes for other active sulfur species
8.1 Fluorescent probes for bisulfite anion
8.2 Fluorescent probes for sulfane sulfurs
9 Conclusion

中图分类号: 

()

[1] Kimura H, Nagai Y, Umemura K, Kimura Y. Antioxid. Redox. Sign., 2005, 7: 795.
[2] Li L, Rose P, Moore P K. Annu. Rev. Pharmacol. Toxicol., 2011, 51: 169.
[3] Kimura H. Amino Acids, 2011, 41: 113.
[4] Stipanuk M H, Ueki I. J. Inherit. MeTab. Dis., 2011, 34: 17.
[5] Dominy J E, Stipanuk M H. Nutr. Rev., 2004, 62: 348.
[6] Calvert J W, Coetzee W A, Lefer D J. Antioxid. Redox. Sign., 2010, 12: 1203.
[7] Lee M, Schwab C, Yu S, McGeer E, McGeer P L. Neurobiol. Aging, 2009, 30: 1523.
[8] Tripatara P, Patel N S, Brancaleone V, Renshaw D, Rocha J, Sepodes B, Mota-Filipe H, Perretti M, Thiemermann C. Eur. J. Pharmacol., 2009, 606: 205.
[9] Stipanuk M H, Beck P W. Biochem. J., 1982, 206: 267.
[10] Madden J A, Ahlf S B, Dantuma M W, Olson K R, Roerig D L. Appl. Physiol., 2012, 112: 411.
[11] Bhatia M, Wong F L, Fu D, Lau H Y, Moochhala S M, Moore P K. FASEB J., 2005, 19: 623.
[12] Yan H, Du J B, Tang C S. Biochem. Biophys. Res. Commun., 2004, 313: 22.
[13] Geng B, Yang J H, Qi Y F, Zhao J, Pang Y Z, Du J B, Tang C S. Biochem. Biophys. Res. Commun., 2004, 313: 362.
[14] Zhang C Y, Du J B, Bu D F, Yan H, Tang X Y, Tang C S. Biochem. Biophys. Res. Commun., 2003, 302: 810.
[15] Wang R. FASEB J., 2002, 16: 1792.
[16] Pandey S K, Kim K H. Environ. Sci. Technol., 2009, 43: 3020.
[17] Siegel L M. Anal. Biochem., 1965, 11: 126.
[18] Fischer E. Ber. Dtsch. Chem. Ges., 1883, 16: 2234.
[19] Searcy D G, Peterson M A. Anal. Biochem., 2004, 324: 269.
[20] Lawrence N S, Davis J, Jiang L, Jones T G, Davies S N, Compton R G. Electroanalysis, 2000, 12: 1453.
[21] Hannestad U, Margheri S, Srbo B. Anal. Biochem., 1989, 178: 394.
[22] Furne J, Saeed A, Levitt M D. Am. J. Physiol. Regul. Integr. Comp. Physiol., 2008, 295: 1479.
[23] Ishigami M, Hiraki K, Umemura K, Ogasawara Y, Ishii K, Kimura H. Antioxid. Redox. Sign., 2009, 11: 205.
[24] Chan J, Dodani S C, Chang C J. Nat. Chem., 2012, 4(12): 973.
[25] Kumar N, Bhalla V, Kumar M. Coord. Chem. Rev., 2013, 257: 2335.
[26] De Silva A P, Gunaratne H Q, Gunnlaugsson T, Huxley A J, McCoy C P, Rademacher J T, Rice T E. Chem. Rev., 1997, 97: 1515.
[27] Grabowski Z R, Rotkiewicz K, Rettig W. Chem. Rev., 2003, 103: 3899.
[28] Miyasaka N, Hirata Y. Life Sci., 1997, 61: 2073.
[29] Yu F B, Li P, Wang B S, Han K L. J. Am. Chem. Soc., 2013, 135: 7674.
[30] Wu Z S, Li Z, Yang L, Han J H, Han S F. Chem. Commun., 2012, 48: 10120.
[31] Chen B F, Li W, Lv C, Zhao M M, Jin H W, Jin H F, Du J B, Zhang L R, Tang X J. Analyst, 2013, 138: 946.
[32] Li W H, Sun W, Yu X Q, Du L, Li M Y. J. Fluoresc., 2013, 23: 181.
[33] Wu M Y, Li K, Hou J T, Huang Z, Yu X Q. Org. Biomol. Chem., 2012, 10: 8342.
[34] Montoya L A, Pluth M D. Chem. Commun., 2012, 48: 4767.
[35] Yu C M, Li X Z, Zeng F, Zheng F Y, Wu S Z. Chem. Commun., 2013, 49: 403.
[36] Xuan W M, Pan R, Cao Y T, Liu K J, Wang W. Chem. Commun., 2012, 48: 10669.
[37] Sun K, Liu X L, Wang Y Y, Wu Z Q. RSC Adv., 2013, 3: 14543.
[38] Lippert A R, New E J, Chang C J. J. Am. Chem. Soc., 2011, 133: 10078.
[39] Lin V S, Lippert A R, Chang C J. Proc. Natl. Acad. Sci. U.S.A., 2013, 110: 7131.
[40] Zhang H T, Wang P, Chen G C, Cheung H Y, Yi L, Sun H Y. Tetrahedron. Lett., 2013, 138: 946.
[41] Yu F B, Li P, Song P, Wang B S, Zhao J Z, Han K L. Chem. Commun., 2012, 48: 2852.
[42] Zheng Y, Zhao M, Qiao Q L, Liu H Y, Lang H J, Xu Z C. Dyes. Pigm., 2013, 98: 367.
[43] Sun W, Fan J L, Hu C, Cao J F, Zhang H, Wang J Y, Cui S, Peng X J. Chem. Commun., 2013, 49: 3890.
[44] Wang R, Yu F B, Chen L X, Chen H, Wang L J, Zhang W W. Chem. Commun., 2012, 48: 11757.
[45] Das S K, Lim C S, Yang S Y, Han J H, Cho B R. Chem. Commun., 2012, 48: 8395.
[46] Bae S K, Heo C H, Choi D J, Sen D, Joe E H, Cho B R, Kim H M. J. Am. Chem. Soc., 2013, 135: 9915.
[47] Mao G J, Wei T T, Wang X X, Huan S Y, Lu D Q, Zhang J, Zhang X B, Tan W H, Shen G L, Yu R Q. Anal. Chem., 2013, 85: 7875.
[48] Peng H J, Cheng Y F, Dai C F, King A L, Predmore B L, Lefer D J, Wang B H. Angew. Chem. Int. Ed. Engl., 2011, 50: 9672.
[49] Wan Q Q, Song Y C, Li Z, Gao X H, Ma H M. Chem. Commun., 2013, 49: 502.
[50] Chen S, Chen Z J, Ren W, Ai H W. J. Am. Chem. Soc., 2012, 134: 9589.
[51] Zhou G D, Wang H L, Ma Y, Chen X Q. Tetrahedron, 2012, 69: 867.
[52] Zheng K B, Lin W Y, Tan L. Org. Biomol. Chem., 2012, 10: 9683.
[53] Chen T, Zheng Y, Xu Z C, Zhao M, Xu Y N, Cui J N. Tetrahedron. Lett., 2013, 49: 7510.
[54] Qian Y, Zhang L, Ding S T, Deng X, He C, Zheng X E, Zhu H L, Zhao J. Chem. Sci., 2012, 3: 2920.
[55] Qian Y, Karpus J, Kabil O, Zhang S Y, Zhu H L, Banerjee R, Zhao J, He C. Nat. Commun., 2011, 2: 495
[56] Li X, Zhang S, Cao J, Xie N, Liu T, Yang B, He Q J, Hu Y Z. Chem. Commun., 2013, 49: 8656.
[57] Liu C R, Pan J, Li S, Zhao Y, Wu L Y, Berkman C E, Whorton A R, Xian M. Angew. Chem., 2011, 123: 10511.
[58] Liu C R, Peng B, Li S, Park C M, Whorton A R, Xian M. Org. Lett., 2012, 14: 2184.
[59] Xu Z, Xu L, Zhou J, Xu Y F, Zhu W P, Qian X H. Chem. Commun., 2012, 48: 10871.
[60] Chen Y C, Zhu C C, Yang Z H, Chen J J, He Y F, Jiao Y, He W, Qiu L, Cen J J, Guo Z J. Angew. Chem., 2013, 125: 1732.
[61] Wang X, Sun J, Zhang W H, Ma X X, Lv J Z, Tang B. Chem. Sci., 2013, 4: 2551.
[62] Liu J, Sun Y Q, Zhang J Y, Yang T, Cao J B, Zhang L S, Guo W. Chem. A Eur. J., 2013, 19: 4717.
[63] Choi M G, Cha S, Lee H, Jeon H L, Chang S K. Chem. Commun., 2009, 7390.
[64] Sasakura K, Hanaoka K, Shibuya N, Mikami Y, Kimura Y, Komatsu T, Ueno T, Terai T, Kimura H, Nagano T. J. Am. Chem. Soc., 2011, 133: 18003.
[65] Hou F P, Huang L, Xi P X, Cheng J, Zhao X F, Xie G Q, Shi Y J, Cheng F J, Yao X J, Bai D C. Inorg. Chem., 2012, 51: 2454.
[66] Hou F P, Cheng J, Xi P, Chen F J, Huang L, Xie G Q, Shi Y J, Liu H Y, Bai D C, Zeng Z Z. Dalton. Trans., 2012, 41: 5799.
[67] Cao X W, Lin W Y, He L W. Org. Lett., 2011, 13: 4716.
[68] Wang M Q, Li K, Hou J T, Wu M Y, Huang Z, Yu X Q. J. Org. Chem., 2012, 77: 8350.
[69] Zhang L, Lou X D, Yu Y, Qin J G, Li Z. Macromolecules, 2011, 44: 5186.
[70] Qu X Y, Li C J, Chen H C, Mack J, Guo Z J, Shen Z. Chem. Commun., 2013, 49: 7510.
[71] Liu T Y, Zhang X F, Qiao Q L, Zou C Y, Feng L, Cui J N, Xu Z C. Dyes. Pigm., 2013, 99: 537.
[72] Liu T Y, Xu Z C, Spring D R, Cui J N. Org. Lett., 2013, 15: 2310.
[73] Cao X W, Lin W Y, Zheng K B, He L W. Chem. Commun., 2012, 48: 10529.
[74] Nagy P, Winterbourn C C. Chem. Res. Toxicol., 2010, 23: 1541.
[75] Kimura Y, Goto Y I, Kimura H. Antioxid. Redox. Sign., 2010, 12: 1.
[76] Wang B S, Li P, Yu F B, Song P, Sun X F, Yang S Q, Lou Z R, Han K L. Chem. Commun., 2013, 49: 1014.
[77] Wang B S, Li P, Yu F B, Chen J S, Qu Z J, Han K L. Chem. Commun., 2013, 49: 5790.
[78] Lou Z R, Li P, Pan Q, Han K L. Chem. Commun., 2013, 49: 2445.
[79] Yang X F, Zhao M L, Wang G. Sensors and Actuators B: Chemical, 2011, 152: 8.
[80] Chen K Y, Guo Y, Lu Z H, Yang B Q, Shi Z. Chin. J. Chem., 2010, 28: 55.
[81] Sun Y Q, Wang P, Liu J, Zhang J Y, Guo W. Analyst, 2012, 137: 3430.
[82] Wu M Y, He T, Li K, Wu M B, Huang Z, Yu X Q. Analyst, 2013, 138: 3018.
[83] Choi M G, Hwang J, Eor S, Chang S K. Org. Lett., 2010, 12: 5624.
[84] Li G Y, Chen Y, Wang J Q, Lin Q, Zhao J, Ji L N, Chao H. Chem. Sci., 2013, 4: 4426.
[85] Chen W, Liu C R, Peng B, Zhao Y, Pacheco A, Xian M. Chem. Sci., 2013, 4: 2892.

[1] 赖燕琴, 谢振达, 付曼琳, 陈暄, 周戚, 胡金锋. 基于1,8-萘酰亚胺的多分析物荧光探针的构建和应用[J]. 化学进展, 2022, 34(9): 2024-2034.
[2] 李立清, 郑明豪, 江丹丹, 曹舒心, 刘昆明, 刘晋彪. 基于邻苯二胺氧化反应的生物分子比色/荧光探针[J]. 化学进展, 2022, 34(8): 1815-1830.
[3] 周宇航, 丁莎, 夏勇, 刘跃军. 荧光探针在半胱氨酸检测的应用[J]. 化学进展, 2022, 34(8): 1831-1862.
[4] 颜范勇, 臧悦言, 章宇扬, 李想, 王瑞杰, 卢贞彤. 检测谷胱甘肽的荧光探针[J]. 化学进展, 2022, 34(5): 1136-1152.
[5] 赵惠, 胡文博, 范曲立. 双光子荧光探针在生物传感中的应用[J]. 化学进展, 2022, 34(4): 815-823.
[6] 李斌, 付艳艳, 程建功. 检测有机磷神经毒剂及模拟物的荧光探针[J]. 化学进展, 2021, 33(9): 1461-1472.
[7] 王学川, 王岩松, 韩庆鑫, 孙晓龙. 有机小分子荧光探针对甲醛的识别及其应用[J]. 化学进展, 2021, 33(9): 1496-1510.
[8] 侯慧鹏, 梁阿新, 汤波, 刘宗坤, 罗爱芹. 光子晶体生化传感器的构建及应用[J]. 化学进展, 2021, 33(7): 1126-1137.
[9] 任春平, 聂雯, 冷俊强, 刘振波. 反应型次氯酸荧光探针[J]. 化学进展, 2021, 33(6): 942-957.
[10] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[11] 党耶城, 冯杨振, 陈杜刚. 红光/近红外光硫醇荧光探针[J]. 化学进展, 2021, 33(5): 868-882.
[12] 吴云雪, 张衡益, 刘育. 偶氮苯衍生物探针在乏氧细胞成像中的应用[J]. 化学进展, 2021, 33(3): 331-340.
[13] 刘园园, 郭芸, 罗晓刚, 刘根炎, 孙琦. 近红外荧光探针检测金属离子、小分子和生物大分子[J]. 化学进展, 2021, 33(2): 199-215.
[14] 徐云雪, 刘仁发, 徐坤, 戴志飞. 手术导航用荧光探针[J]. 化学进展, 2021, 33(1): 52-65.
[15] 淡猛, 蔡晴, 向将来, 李筠连, 于姗, 周莹. 用于光催化分解硫化氢制氢的金属硫化物[J]. 化学进展, 2020, 32(7): 917-926.
阅读次数
全文


摘要

检测硫化氢分子的荧光探针