English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 976-986 DOI: 10.7536/PC131139 前一篇   后一篇

• 综述与评论 •

三氟甲基烷基酮的生物活性及合成方法

杨冬梅, 周宇涵*, 常晴, 赵一龙, 曲景平   

  1. 大连理工大学 制药科学与技术学院 精细化工国家重点实验室 大连 116024
  • 收稿日期:2013-11-01 修回日期:2014-02-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 周宇涵 E-mail:zhouyh@dl.cn
  • 基金资助:

    国家自然科学基金项目(No.21376040)、教育部留学回国人员科研启动基金项目(No.20121707)和中央高校基本科研业务费专项资金项目(No.DUT13LAB03)资助

Bioactivities and Synthesis of Trifluoromethyl Alkyl Ketones

Yang Dongmei, Zhou Yuhan*, Chang Qing, Zhao Yilong, Qu Jingping   

  1. State Key Laboratory of Fine Chemicals, School of Pharmaceutical Science and Technology, Dalian University of Technology, Dalian 116024, China
  • Received:2013-11-01 Revised:2014-02-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.21376040), the Scientific Research Starting Foundation for Returned Overseas Chinese Scholars, Ministry of Education, China (No.20121707) and the Fundamental Research Funds for the Central Universities (No.DUT13LAB03)

三氟甲基烷基酮类化合物(TFMKs)具有独特的生理活性,三氟甲基能够增强化合物的亲脂性、代谢稳定性以及生物利用度。由于三氟乙酰基强烈的吸电子特性,TFMKs能够与目标水解酶形成稳定的半缩酮加合物,对生命体内多种活性酶起到抑制作用。最新的两个重要发现是TFMKs可以抑制SARS病毒和应用于眼科疾病,含氟原子数目、部位、有机碳链长度、不饱和度、其他官能团种类都是影响TFMKs作用的因素。TFMKs类化合物的合成方法,包括烃基金属试剂与三氟乙酸衍生物反应、使用三氟甲基化试剂TMS-CF3与羰基衍生物反应、三氟甲基仲醇氧化、羧酸与三氟乙酸酐/吡啶反应等方法。本文按照其作用的途径进行分类,归纳了三氟甲基烷基酮类化合物的药理活性,对现有的三氟甲基烷基酮类化合物合成方法进行了总结。

With high lipophicity and metabolic stability, trifluoromethyl alkyl ketones (TFMKs) act as important bioactive molecules, especially enzyme inhibitors. Besides, they are superior intermediates for pharmaceuticals and materials. Due to severe electrophilicity of trifluoromethyl, TFMKs form covalent hemiketal adducts targeting at many hydrolytic enzymes such as phospholipase A2 (PLA2) both in mammal and plant, human leukocyte elastase, oleamide hydrolase, human plasma kallikrein, pig liver esterase. TFMKs are inhibitors of human renin in the regulation of blood pressure and electrolyte homeostasis. Structure of chymotrypsin-trifluoromethyl ketone inhibitor complexes have been presented by XRD and NMR spectroscopy, this inhibition is depended on pH. TFMKs are also served as outstanding inhibitors of SARS-CoV 3CL protease. Diversity methods have been used in synthesis of TFMKs, involving the reactions of organometallic reagent like Grignard reagent or alkyl lithium with trifluoromethyl acid, acetate, or their salts, ester or amide react with TMSCF3 or Et3GeNa/PhSCF3 to generate nucleophilic trifluoromethylation, treatment of carboxylic acid chlorides with pyridine and trifluoroacetic anhydride, sulfone-mediated synthesis of TFMKs from alkyl and alkenyl bromides, oxidation of trifluoromethyl carbinols, catalytic aerobic oxidative decarboxylation of trifluoromethylhydroxy acids, conversion of trifluoroethyl amines by the treatment of NBS/DBU, conversion of enolizable carboxylic acids to TFMKs via enediolate trifluoroacetylation/decarboxylation, and ring opening of alkyl 2-siloxycyclopropanecarboxylates by triethylamine trihydrofluoride. Bioactive TFMKs on enzyme inhibition are summarized and synthesis methods are discussed in this paper, trend on both application and preparation are described.

Contents
1 Introduction
2 Possible mechanism and bioactivities of TFMKs
2.1 Inhibition on phospholipase A2(PLA2)
2.2 Inhibition on FAAH hydrolases
2.3 Inhibition on AChE
2.4 Inhibition on chymotrypsin
2.5 Inhibition on SARS-CoV 3CL
2.6 Inhibition on juvenile hormone esterase
2.7 Inhibition on other hydrolases
3 Synthesis of TFMKs
3.1 Organometallic reagent with trifluoromethyl acid, acetate, or their salts
3.2 Nucleophilic trifluoromethylation with TMSCF3 or Et3GeNa/PhSCF3
3.3 Carboxylic acid chlorides with pyridine and trifluoroacetic anhydride
3.4 Ethanolysis after condensation
3.5 Oxidation of trifluoromethylcarbinols
3.6 Trifluoroacetic ester/ketone exchange
3.7 Other methods
4 Conclusion and outlook

中图分类号: 

()

[1] Müller K, Faeh C, Diederich F. Science, 2007, 317: 1881.
[2] Furuya T, Kamlet A S, Ritter T. Nature, 2011, 473: 470.
[3] Ismail F M D. J. Fluorine Chem., 2002, 118 (1-2): 27.
[4] Purser S, Moore P R, Swallow S, Gouverneur V. Chem. Soc. Rev., 2008, 37 (2): 320.
[5] Pierce M E, Parsons R L, Jr, Radesca L A, Lo Y S, Silverman S, Moore J R, Islam Q, Choudhury A, Fortunak J M D, Nguyen D, Luo C, Morgan S J, Davis W P, Confalone P N. J. Org. Chem., 1998, 63 (23): 8536.
[6] 刘金涛 (Liu J T). 化学通报 (Chemistry), 2001, 1: 60.
[7] Wang Y S, Fang X Q, Chen H Y, Wu B, Wang Z Y U. Hilty C, Liu W R. ACS Chem. Biol., 2013, 8: 405.
[8] Zhang H, Li Y, Jiang Z X. J. Biomol. Res. Ther. 2012, 1: e107.
[9] Olvera L I, Guzmán-Gutiérrez M T, Zolotukhin M G, Fomine S, Cárdenas J, Ruiz-Trevino F A, Villers D, Ezquerra T A, Prokhorov E. Macromolecules, 2013, 46: 7245.
[10] Kiss L E, Ferreira H S, Learmonth D A. Org. Lett., 2008, 10: 1835.
[11] Grellepois F, Chorki F, Crousse B, Ourévitch M, Bonnet-Delpon D, Bégué J P. J. Org. Chem., 2002, 67: 1253.
[12] Hagmann W K. J. Med. Chem., 2008, 51: 4359.
[13] Linderman R J, Jamois E A. J. Fluorine Chem., 1991, 53: 79.
[14] Nagib D A, MacMillan D W C. Nature, 2011, 480: 224.
[15] 何伟明 (He W M),翁志强 (Weng Z Q). 化学进展(Progress in Chemistry), 2013, 25(7): 1071.
[16] 戚自松 (Qi Z S),董亚丽 (Dong Y L),李亚明 (Li Y M),段春迎 (Duan C Y). 化学进展 (Progress in Chemistry), 2012, 24(11): 2177.
[17] Cho E J, Senecal T D, Kinzel T, Zhang Y, Watson D A, Buchwald S L. Science, 2010, 328: 1679.
[18] 卿凤翎 (Qing F L). 有机化学 (Chin. J. Org. Chem.), 2012, 32: 815.
[19] Yang Y, Huanga Y, Qing F-L. Tetrahedron Lett., 2013, 54: 3826.
[20] Gao J-R, Wu H, Xiang B, Yu W-B, Han L, Jia Y-X. J. Am. Chem. Soc. 2013, 135: 2983.
[21] Liu M, Li J, Xiao X, Xie Y, Shi Y. Chem. Commun., 2013, 49: 1404.
[22] Zheng Y, Xiong H-Y, Nie J, Hua M-Q, Ma J-A. Chem. Commun., 2012, 48: 4308.
[23] Zhao Q-Y, Huang L, Wei Y, Shi M. Adv. Synth. Catal., 2012, 354: 1926.
[24] Liang T C, Abeles R H. Biochemistry, 1987, 26: 7603.
[25] Sydnes M O, Hayashi Y, Sharma V K, Hamada T, Bacha U, Barrila J, Freire E, Kiso Y. Tetrahedron, 2006, 62: 8601.
[26] Bacha U, Barrila J, Gabelli B, Kiso Y, Amzel L M, Freire E. Chem. Biol. Drug Des., 2008, 72: 34.
[27] Tripathi T, Abdi M, Alizadeh H. Experimental Eye Research, 2013, 113: 182.
[28] Edwards P D, Bernstein P R. Medicinal Research Reviews, 1994, 14: 127.
[29] de la Sierra I L, Papamichael E, Sakarellos C, Dimicoli J L, Prangé T. J. Mol. Recogn., 1990, 3: 36.
[30] Takahashi L H, R. Radhakrishnan R E, Rosenfield Jr R E, Meyer Jr E F, Trainor D A, Stein M. J. Mol. Biol., 1988, 201: 423.
[31] Gelb M H, Svaren J P, Abeles R H. Biochemistry, 1985, 24: 1813.
[32] Imperiali B, Abeles R H. Biochemistry, 1986, 25: 3760.
[33] Tripathi T, Smith A D, Abdi M, Alizadeh H. IOVS, 2012, 53: 7973.
[34] Huwiler A, Feuerherm A J, Sakem B, Pastukhov O, Filipenko I, Nguyen T, Johansen B. Br. J. Pharmacol., 2012, 167: 1691.
[35] Jin Z W, Kim H K, Lee C H, Jung S W, Shin S J, Im S Y, Cho B H, Lee H K. J. Dermatol. Sci., 2012, 67: 88.
[36] Zhang J, Barasch N, Li R C, Sapirstein A. Brain Res., 2012, 1471: 129.
[37] Rodríguez Diez G, Uranga R M, Mateos M V, Giusto N M, Salvador G A. Neurochem. Int., 2012, 61: 749.
[38] Tronoa D, Socciob M, Lausb M N, Pastoreb D. Plant Sci., 2013, 199-200: 91.
[39] Ortar G, Cascio M G, De Petrocellis L, Morera E, Rossi F, Schiano-Moriello A, Nalli M, de Novellis V, Woodward D F, Maione S, Di Marzo V. J. Med. Chem., 2007, 50: 6554.
[40] López-Rodríguez M L, Viso A, Ortega-Gutiérrez S, Fowler C J, Tiger G, de Lago E, Fernández-Ruiz J, Ramos J A. J. Med. Chem., 2003, 46: 1512.
[41] Alexander J P, Cravatt B F. J. Am. Chem. Soc., 2006, 128: 9699.
[42] Anthony Romero F, Hwang I, Boger D L. J. Am. Chem. Soc., 2006, 128: 14004.
[43] Patricelli M P, Cravatt B F. Biochemistry, 2001, 40: 6107.
[44] Patricelli M P, Lovato M A, Cravatt B F. Biochemistry, 1999, 38: 9804.
[45] Karsak M, Gaffal E, Date R, Wang-Eckhardt L, Rehnelt J, Petrosino S, Starowicz K, Steuder R, Schlicker E, Cravatt B, Mechoulam R, Buettner R, Werner S, Di Marz V, Tüting T, Zimmer A. Science, 2007, 316: 1494.
[46] Tubert-Brohman I, Acevedo O, Jorgensen W L. J. Am. Chem. Soc., 2006, 128: 16904.
[47] Patterson J E, Ollmann I R, Cravatt B F, Boger D L, Wong C H, Lerner R A. J. Am. Chem. Soc., 1996, 118: 5938.
[48] 勒尔纳 R A,王 C H,波格尔 D L,亨克森 S H. CN1228764A, 1999.
[49] Allen K N, Abeles R H. Biochemistry, 1989, 28: 8466.
[50] Brady K, Wei A, Ringe D, Abeles R H. Biochemistry, 1990, 29: 7600.
[51] Westler W M, Frey P A, Lin J, Wemmer D E, Morimoto H, Williams P G, Markley J L. J. Am. Chem. Soc., 2002, 124: 4196.
[52] Regnier T, Sarma D, Hidaka K, Bacha U, Freire E, Hayashi Y, Kiso Y. Bioorg. Med. Chem. Lett., 2009, 19: 2722.
[53] Shao Y M, Yang W B, Kuo T H, Tsai K C, Lin C H, Yang A S, Liang P H, Wong C H. Bioorg. Med. Chem., 2008, 16: 4652.
[54] Abdel-Aal Y A I, Hammock B D. Science, 1986. 233: 1073.
[55] Wheelock C E, Nakagawa Y, Akamatsu M, Hammock B D. Bioorg. Med. Chem., 2003, 11: 5101.
[56] Nyormoi O, Wang Z, Bar-Eli M. Apoptosis, 2003, 8: 371.
[57] Aparna Lakshmi I, Madhusudhan T, Praveen Kumar D, Padmavathy J, Saravanan D, Praveen Kumar Ch. Int. J. Pharm. Sci. Rev. Res., 2011, 10: 38.
[58] Prestwich G D, Eng W S, Roe R M, Hammock B D. Arch. Biochem. Biophys., 1984, 228: 639.
[59] Allen K N, Abeles R H., Biochemistry, 1989, 28: 135.
[60] Stein R L, Strimpler A M, Edwards P D, Lewis J J, Mauger R C, Schwartz J A, Stein M M, Amy Trainor D, Wildonger R A, Zottola M A. Biochemistry, 1987, 26: 2682.
[61] Veale C A, Damewood J R, Jr, Steelman G B, Bryant C, Gomes B, Williams J J. Med. Chem., 1995, 38: 86.
[62] Govardhan C P, Abeles R H. Arch. Biochem. Biophys., 1990, 280: 137.
[63] Brady K, Liang T C, Abeles R H. Biochemistry, 1989, 28: 9066.
[64] Tarnus C, Jung M J, Rémy J M, Baltzer S, Schirlin D G. FEBS Lett., 1989, 249: 47.
[65] Patel D V, Rielly-Gauvin K, Ryono D E, Free C A, Smith S A, Petrillo Jr E.W. J. Med. Chem., 1993, 36: 2431.
[66] Oishi M, Kondo H, Amii H. Chem. Commun., 2009: 1909.
[67] Tomashenko O A, Grushin V V. Chem. Rev., 2011, 111: 4475.
[68] Dishart K T, Levine R. J. Am. Chem. Soc. 1956, 78: 2268.
[69] Bluhm H F, Donn H Y, Zook H D. J. Am. Chem. Soc. 1955, 77: 4406.
[70] 龚跃法 (Gong Y F), 徐绍芳 (Xu S F), 陈典文 (Chen D W). 化学试剂 (Chemical Reagents ), 1995, 17: 313.
[71] 胡正 (Hu Z), 周强 (Zhou Q), 耿为利 (Geng W L), 兰喜平 (Lan X P). CN103224447A, 2013.
[72] Zou L F, Paton R S, Eschenmoser A, Newhouse T R, Baran P S, Houk K N. J. Org. Chem., 2013, 78: 4037.
[73] Decroos C, Bowman C M, Christianson D W. Bioorg. Med. Chem., 2013, 21: 4530.
[74] Wiedemann J, Heiner T, Mloston G, Prakash G K S, Olah G A. Angew. Chem. Int. Ed., 1998, 37: 820.
[75] Singh R P, Cao G, Kirchmeier R L, Shreeve J M. J. Org. Chem., 1999, 64: 2873.
[76] Rudzinski D M, Kelly C B, Leadbeater N E. Chem. Commun., 2012, 48: 9610.
[77] Yokoyama Y, Mochida K. Synlett, 1997: 907.
[78] Boivin J, Kaim L E, Zard S Z. Tetrahedron, 1995, 51: 2573.
[79] Kelly C B, Mercadante M A, Leadbeater N E. Chem. Commun., 2013, 49: 11133.
[80] Frey R R, Wada C K, Garland R B, Curtin M L, Michaelides M R, Li J, Pease L J, Glaser K B, Marcotte P A, Bouska J J, Murphy S S, Davidsen S K. Bioorg. Med. Chem. Lett., 2002, 12: 3443.
[81] Jose B, Oniki Y, Kato T, Nishino N, Sumida Y, Yoshida M. Bioorg. Med. Chem. Lett., 2004, 14: 5343.
[82] Baskakis C, Magrioti V, Cotton N, Stephens D, Constantinou-Kokotou V, Dennis E A, Kokotos G. J. Med. Chem., 2008, 51: 8027.
[83] Reeves J T, Gallou F, Song J J, Lee H, Yee N K, Senanayake C H. Tetrahedron Lett., 2007, 48: 189.
[84] Reeves J T, Fandrick D R, Tan Z l, Song J J, Rodriguez S, Qu B, Kim S, Niemeier O, Li Z, Byrne D, Campbell S, Chitroda A, De Croos P, Fachinger T, Fuchs V, Gonnella N C, Grinberg N, Haddad N, Jger B, Lee H, Lorenz J C, Ma S, Narayanan B A, Nummy L J, Premasiri A, Roschangar F, Sarvestani M, Shen S, Spinelli E, Sun X F, Varsolona R J, Yee N, Brenner M, Senanayake C H. J. Org. Chem., 2013, 78: 3616.
[85] Fandrick D R, Reeves J T, Bakonyi J M, Nyalapatla P R, Tan Z l, Niemeier O, Akalay D, Fandrick K R, Wohlleben W, Ollenberger S, Song J J, Sun X F, Qu B, Haddad N, Sanyal S, Shen S, Ma S l, Byrne D, Chitroda A, Fuchs V, Narayanan B A, Grinberg N, Lee H, Yee N, Brenner M, Senanayake C H. J. Org. Chem., 2013, 78: 3592.
[86] McBee E, Hathaway C, Roberts C. J. Am. Chem. Soc., 1956, 78: 4053.
[87] Reeves J T, Song J J, Tan Z, Lee H, Yee N K, Senanayake C H. J. Org. Chem., 2008, 73: 9476.
[88] Linderman R J, Graves D M. Tetrahedron Lett., 1987, 28: 4259.
[89] Tanaka Y, Ishihara T, Konno T. J. Fluorine Chem., 2012, 137: 99.
[90] Kelly C B, Mercadante M A, Hamlin T A, FletcherM H, Leadbeater N E. J. Org. Chem., 2012, 77: 8131.
[91] Yang D, Zhou Y, Xue N, Qu J. J. Org. Chem., 2013, 78: 4171.
[92] Chang Y, Cai C. J. Fluorine Chem., 2005, 126: 937.
[93] Munoz L, Rosa E, Bosch M P, Guerrero A. Tetrahedron Lett., 2005, 46: 3311.
[94] Blay G, Fernandez I, Marco-Aleixandre A, Monje B, Pedro J R, Ruiz R. Tetrahedron, 2002, 58: 8565.
[95] Kim S, Kavali R. Tetrahedron Lett., 2002, 43: 7189.
[96] Bégué J P, Mesureur D. Synthesis, 1989, 4: 309.
[97] Derstine C W, Smith D N, Katzenellenbogen J A. J. Am. Chem. Soc., 1996, 118: 8485.
[98] Gladow F G, Reissig H U. Synthesis, 2013, 45: 2179.

[1] 何静, 陈佳, 邱洪灯. 中药碳点的合成及其在生物成像和医学治疗方面的应用[J]. 化学进展, 2023, 35(5): 655-682.
[2] 鄢剑锋, 徐进栋, 张瑞影, 周品, 袁耀锋, 李远明. 纳米碳分子——合成化学的魅力[J]. 化学进展, 2023, 35(5): 699-708.
[3] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[4] 王新月, 金康. 多肽及蛋白质的化学合成研究[J]. 化学进展, 2023, 35(4): 526-542.
[5] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[6] 龚智华, 胡莎, 金学平, 余磊, 朱园园, 古双喜. 磷酸酯类前药的合成方法与应用[J]. 化学进展, 2022, 34(9): 1972-1981.
[7] 林业竣, 李艳梅. 翻译后修饰Tau蛋白及其化学全/半合成[J]. 化学进展, 2022, 34(8): 1645-1660.
[8] 宝利军, 危俊吾, 钱杨杨, 王雨佳, 宋文杰, 毕韵梅. 酶响应性线形-树枝状嵌段共聚物的合成、性能及应用[J]. 化学进展, 2022, 34(8): 1723-1733.
[9] 徐鹏, 俞飚. 聚糖化学合成的挑战和可能的凝聚态化学问题[J]. 化学进展, 2022, 34(7): 1548-1553.
[10] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[11] 王鹏, 刘欢, 杨妲. 烯烃的氢甲酰化串联反应研究[J]. 化学进展, 2022, 34(5): 1076-1087.
[12] 马晓清. 石墨炔在光催化及光电催化中的应用[J]. 化学进展, 2022, 34(5): 1042-1060.
[13] 赵聪媛, 张静, 陈铮, 李建, 舒烈琳, 纪晓亮. 基于电活性菌群的生物电催化体系的有效构筑及其强化胞外电子传递过程的应用[J]. 化学进展, 2022, 34(2): 397-410.
[14] 闫保有, 李旭飞, 黄维秋, 王鑫雅, 张镇, 朱兵. 氨/醛基金属有机骨架材料合成及其在吸附分离中的应用[J]. 化学进展, 2022, 34(11): 2417-2431.
[15] 杨林颜, 郭宇鹏, 李正甲, 岑洁, 姚楠, 李小年. 钴基费托合成催化剂的表界面性质调控[J]. 化学进展, 2022, 34(10): 2254-2266.