English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 756-771 DOI: 10.7536/PC131125 前一篇   后一篇

• 综述与评论 •

软模板合成有序介孔碳材料

刘蕾1,2, 袁忠勇*1   

  1. 1. 南开大学化学学院 先进能源材料化学教育部重点实验室 天津化学化工协同创新中心 天津 300071;
    2. 山东科技大学材料科学与工程学院 青岛 266590
  • 收稿日期:2013-11-01 修回日期:2014-02-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 袁忠勇,e-mail:zyyuan@nankai.edu.cn E-mail:zyyuan@nankai.edu.cn
  • 基金资助:

    国家自然科学基金项目(No.51302154);111计划(B12015)和教育部创新团队(IRT13022)资助

Ordered Mesoporous Carbon Materials Synthesized by Organic-Organic Self-Assembly

Liu Lei1,2, Yuan Zhongyong*1   

  1. 1. Key Laboratory of Advanced Energy Materials Chemistry of Ministry of Education, Collaborative Innovation Center of Chemical Science and Engineering (Tianjin), College of Chemistry, Nankai University, Tianjin 300071, China;
    2. School of Materials Science and Engineering, Shandong University of Science and Technology, Qingdao 266590, China
  • Received:2013-11-01 Revised:2014-02-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No.51302154), the 111 project (B12015) and the Program for Innovation Research Team in University (IRT13022)

有序介孔碳材料由于其较大的表面积、均一的孔径、良好的热稳定性和化学稳定性,广泛应用于吸附、分离、催化以及能量储存等众多领域。与传统的以硅基介孔材料为硬模板的反向复制方法相比,通过嵌段共聚物和聚合物前驱体之间的有机-有机自组装的软模板法简便易行,已成为合成有序介孔碳材料有效方法。本论文综述了介孔碳材料的软模板合成机制、合成方法、功能化及其应用,对合成技术、结构控制、孔径调控以及形貌控制等方面进行了讨论,并探讨了其在吸附、催化、电极材料等领域的应用。

Ordered mesoporous carbon materials have attracted great research interests due to their extremely large surface area, uniform pore size, high thermal stability and chemical inertness, which have been widely used in the areas including catalysis, adsorption, energy storage and conversion. The direct synthesis strategy from organic-organic self-assembly involving the combination of polymerizable precursors and block copolymer templates is expected to be more flexible in preparing mesoporous carbons, compared with the traditional nanocasting strategy of fussy and high-cost procedures using mesoporous silica materials as the hard template. In this critical review, we present the fundamentals and recent advances related to the researches of ordered mesoporous carbon materials from the direct synthesis strategy of block copolymer soft-templating, with a focus on their controllable preparation, modification and potential applications. Under the guidance of their formation mechanism, the preparation of ordered mesoporous carbons are detailedly discussed by synthetic pathways, including evaporation induced self-assembly method, dilute aqueous route, macroscopic phase separation and hydrothermal autoclaving process. The mesopore size and morphology control, and the hybrid carbon materials are also demonstrated. The potential applications of pure and modified mesoporous carbons in adsorption, catalysis and electrochemistry are detailed discussed. Furthermore, remarks on the challenges and perspectives of research directions are proposed for further development of ordered mesoporous carbons.

Contents
1 Introduction
2 Synthesis of ordered mesoporous carbon
2.1 Synthesis mechanism
2.2 Synthesis pathway
2.3 Mesostructure control
2.4 Pore size control
2.5 Morphology control
2.6 Hybrid carbon materials
3 Applications
3.1 Gas adsorption and storage
3.2 Dye and protein adsorption
3.3 Electrode materials for supercapacitors
3.4 Catalysis
4 Conclusion and outlook

中图分类号: 

()

[1] Beck J S, Vartuli J C, Roth W J, Leonowicz M E, Kresge C T, Schmitt K D, Chu C T W, Olson D H, Sheppard E W. J. Am. Chem. Soc., 1992, 114:10834.
[2] Zhao D Y, Feng J L, Huo Q S, Melosh N, Fredrickson G H, Chmelka B F, Stucky G D. Science, 1998, 2:548.
[3] Zhao D Y, Huo Q S, Feng J L, Chmeika B F, Stucky G D. J. Am. Chem. Soc., 1998, 120:6024.
[4] Fan J, Yu C Z, Gao F, Lei J, Tian B Z, Wang L M, Luo Q, Tu B, Zhou W Z, Zhao D Y. Angew. Chem. Int. Ed., 2003, 42: 3146.
[5] Fan J, Yu C Z, Lei J, Zhang Q, Li T C, Tu B, Zhou W Z, Zhao D Y. J. Am. Chem. Soc., 2005, 127:10794.
[6] Shen S D, Garcia-Bennett A E, Liu Z, Lu Q Y, Shi Y F, Yan Y, Yu C Z, Liu W C, Cai Y, Terasaki O, Zhao D Y. J. Am. Chem. Soc., 2005, 127:6780.
[7] Jun S, Joo S H, Ryoo R. J. Am. Chem. Soc., 2000, 122:10712.
[8] Ryoo R, Joo S H, Kruk M, Jaroniec M. Adv. Mater., 2001, 13:677.
[9] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103:7743.
[10] Kim S S, Zhang W Z, Pinnavaia T J. Science, 1998, 282: 1302.
[11] Kim S S, Pauly T R, Pinnavaia T J. Chem. Commun., 2000, 1661.
[12] Kleitz F, Choi S H, Ryoo R. Chem. Commun., 2003, 2136.
[13] Kim T W, Kleitz F, Paul B, Ryoo R. J. Am. Chem. Soc., 2005, 127:7601.
[14] Tian B Z, Liu X Y, Tu B, Yu C, Fan J, Wang L, Xie S, Stucky G D, Zhao D Y. Nat. Mater., 2003, 2:159.
[15] Nghiem Q D, Kim D P. Chem. Mater., 2008, 20:3735.
[16] Malenfant P R L, Wan J L, Taylor S T, Seth T T, Mohan M. Nat. Nanotechnol., 2007, 2:43.
[17] Mizoshita N, Tani T, Inagaki S. Chem. Soc. Rev., 2011, 40: 789.
[18] Ma T Y, Li H, Deng Q F, Liu L, Yuan Z Y. Chem. Mater., 2012, 24:2253.
[19] Ma T Y, Yuan Z Y. ChemSusChem, 2011, 4:1407.
[20] Nakagawa H, Watanabe K, Harada Y, Miura K. Carbon, 1999, 37:1455.
[21] Bae J S, Bhatia S K. Energy Fuels, 2006, 20:2599.
[22] Kyotani T, Ma Z, Tomita A. Carbon, 2003, 41:1451.
[23] Hou P X, Orikasa H, Yamazaki T, Matsuoka K, Tomita A, Setoyama N, Fukushima Y, Kyotani T. Chem. Mater., 2005, 17:518.
[24] Yu J S, Kang S, Yoon S B, Chai G. J. Am. Chem. Soc., 2002, 124:9382.
[25] Baumann T F, Satcher J H. Chem. Mater., 2003, 15: 3745.
[26] Tamai H, Kakii T, Hirota Y, Kumamoto T, Yasuda H. Chem. Mater., 1996, 8:454.
[27] Horikawa T, Hayashi J, Muroyama K. Carbon, 2004, 42:169.
[28] Ryoo R, Joo S H, Jun S. J. Phys. Chem. B, 1999, 103:7743.
[29] Lee J, Yoon S, Hyeon T, Oh S M, Kim K B. Chem. Commun., 1999, 2177.
[30] Jun S, Joo S H, Ryoo R, Kruk M, Jaroniec M, Liu Z, Oshuma T, Teresaki O. J. Am. Chem. Soc., 2000, 122:10712.
[31] Li H C, Sakamoto Y, Li Y S, Terasakib O, Thommesc M, Che S A. Micropor. Mesopor. Mater., 2006, 95:193.
[32] Kim S S, Pinnavaia T J. Chem. Commun., 2001, 2418.
[33] Lee J, Yoon S, Oh S M, Shin C H, Hyeon T. Adv. Mater., 2000, 12:359.
[34] Liang C, Hong K, Guiochon G A, Mays J W, Dai S. Angew. Chem. Int. Ed., 2004, 43:5785.
[35] Tanaka S, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2005, 2125.
[36] Meng Y, Gu D, Zhang F Q, Shi Y F, Yang H F, Li Z, Yu C Z, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2005, 44:7053.
[37] Moriguchi I, Ozono A, Mikuriya K, Teraoka Y, Kagawa S, Kodama M. Chem. Lett., 1999, 1171.
[38] Lee K T, Oh S M. Chem. Commun., 2002, 2722.
[39] Meng Y, Gu D, Zhang F Q, Shi Y F, Cheng L, Feng D, Wu Z X, Chen Z X, Wan Y, Stein A, Zhao D Y. Chem Mater., 2006, 18:4447.
[40] Huang Y, Cai H Q, Yu T, Zhang F Q, Zhang F, Meng Y, Gu D, Wan Y, Sun X L, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2007, 46:1089.
[41] Zhang F Q, Meng Y, Gu D, Yan Y, Yu C Z, Tu B, Zhao D Y. J. Am. Chem. Soc., 2005, 127:13508.
[42] Meng Y, Gu D, Zhang F Q, Yan Y, Chen Z X, Tu B, Zhao D Y. Chem. Mater., 2006, 18:5279.
[43] Huang Y, Yang J P, Cai H Q, Zhai Y P, Feng D, Deng Y H, Tu B, Zhao D Y. J. Mater. Chem., 2009, 19:6536.
[44] Wang X Q, Liang C D, Dai S. Langmuir, 2008, 24:7500.
[45] Schlienger S, Graff A L, Celzard A, Parmentier J. Green Chem., 2012, 14:313.
[46] Liang Y R, Fu R W, Wu D C. ACS Nano, 2013, 7: 1748.
[47] 刘 蕾 (Liu L), 袁忠勇 (Yuan Z Y).中国科技论文在线(Sciencepaper Online), 2011, 6(3):161.
[48] Jin J, Nishiyama N, Egashira Y, Ueyama K. Chem. Commun., 2009, 1371.
[49] Kimijima K, Hayashi A, Yagi I. Chem. Commun., 2008, 5809.
[50] Florent M, Xue C F, Zhao D Y, Goldfarb D. Chem. Mater., 2012, 24:383.
[51] Liang Y R, Lu S H, Wu D C, Sun B, Xu F, Fu R W. J. Mater. Chem. A, 2013, 1:3061.
[52] Liu D, Lei J H, Guo L P, Qu D Y, Li Y, Su B L. Carbon, 2012, 50:476.
[53] Gao P, Wang A Q, Wang X D, Zhang T. Chem. Mater., 2008, 20:1881.
[54] Zhao X C, Wang A Q, Yan J W, Sun J, Sun L, Zhang T. Chem. Mater., 2010, 22:5463.
[55] Liang C D, Dai S. J. Am. Chem. Soc., 2006, 128: 5316.
[56] Lu A H, Spliethoff B, Schüth F. Chem. Mater., 2008, 20: 5314.
[57] Vercaemst C, Ide M, Allaert B, Ledoux N, Verpoorta F, Voort P V D. Chem. Commun., 2007, 2261.
[58] Cundy C S, Cox P A. Chem. Rev., 2003, 103:663.
[59] Liu L, Wang F Y, Shao G S, Yuan Z Y. Carbon, 2010, 48:2089.
[60] Huang Y, Cai H Q, Feng D, Gu D, Deng Y H, Tu B, Wang H T, Webleyb P A, Zhao D Y. Chem. Commun., 2008, 2641.
[61] Wan Y, Shi Y F, Zhao D Y. Chem. Commun., 2007, 897.
[62] Huang Y, Cai H Q, Yu T, Sun X L, Tu B, Zhao D Y. Chem. Asian J., 2007, 2:1282.
[63] Schwuger M J. J. Colloid Interf. Sci., 1973, 42:491.
[64] Liu R L, Shi Y F, Wan Y, Meng Y, Zhang F Q, Gu D, Chen Z X, Tu B, Zhao D Y. J. Am. Chem. Soc., 2006, 128:11652.
[65] Liu L, Wang F Y, Shao G S, Yuan Z Y. Carbon, 2010, 48:2660.
[66] Meng Y, Yu T, Wan Y, Shi Y F, Meng Y, Gu D, Zhang L, Huang Y, Liu C, Wu X, Zhao D Y. J. Am. Chem. Soc., 2007, 129:1690.
[67] Zhang J Y, Deng Y H, Wei J, Sun D K, Gu D, Bongard H, Liu C, Wu H H, Tu B, Schüth F, Zhao D Y. Chem. Mater., 2009, 21:3996.
[68] Liang Y R, Wu D C, Fu R W. Langmuir, 2009, 25:7783.
[69] Deng Y H, Liu C, Yu T, Liu F, Zhang F Q, Wan Y, Zhang L J, Wang C C, Tu B, Webley P A, Wang H T, Zhao D Y. Chem. Mater., 2007, 19:3271.
[70] Wang Z Y, Stein A. Chem. Mater., 2008, 20:1029.
[71] Xue C F, Tu B, Zhao D Y. Adv. Funct. Mater., 2008, 18:3914.
[72] Liang Y R, Li Z H, Fu R W, Wu D C. J. Mater. Chem. A, 2013, 1:3768.
[73] Zhang F Q, Gu D, Yu T, Zhang F, Xie S H, Zhang L J, Deng Y H, Wan Y, Tu B, Zhao D Y. J. Am. Chem. Soc., 2007, 129:7746.
[74] Gu D, Bongard H, Meng Y, Miyasaka K, Terasaki O, Zhang F Q, Deng Y H, Wu Z X, Feng D, Fang Y, Tu B, Schüth F, Zhao D Y. Chem. Mater., 2010, 22:4828.
[75] Zheng M B, Cao J M, Ke X F, Ji G B, Chen Y P, Shen K, Tao J. Carbon, 2007, 45:1111.
[76] Martin S, Liang C, Lynn G W, Gösele U, Dai S. Chem. Mater., 2007, 19:2383.
[77] Wang K X, Birjukovs G, Erts D, Phelan R, Morris M A, Zhou H S, Holmes J D. J. Mater. Chem., 2009, 19:1331.
[78] Liu H J, Wang X M, Cui W J, Dou Y Q, Zhao D Y, Xia Y Y. J. Mater. Chem., 2010, 20:4223.
[79] Yan X, Song H H, Chen X H. J. Mater. Chem., 2009, 19:4491.
[80] Yan Y, Zhang F Q, Meng Y, Tu B, Zhao D Y. Chem. Commun., 2007, 2867.
[81] Fang Y, Gu D, Zou Y, Wu Z X, Li F Y, Che R C, Deng Y H, Tu B, Zhao D Y. Angew. Chem. Int. Ed., 2010, 49:7987.
[82] Wu Z X, Wu W D, Liu W J, Selomulya C, Chen X H, Zhao D Y. Angew. Chem. Int. Ed., 2013, 52:13764.
[83] Sun Z K, Liu Y, Li B, Wei J, Wang M H, Yue Q, Deng Y H, Kaliaguine S, Zhao D Y. ACS Nano, 2013, 7:8706.
[84] Long D H, Lu F, Zhang R, Qiao W M, Zhan L, Liang X Y, Ling L C. Chem. Commun., 2008, 2647.
[85] Wan Y, Qian X F, Jia N Q, Wang Z Y, Li H X, Zhao D Y. Chem. Mater., 2008, 20:1012.
[86] Wang X Q, Lee J S, Zhu Q, Liu J, Wang Y, Dai S. Chem. Mater., 2010, 22:2178.
[87] Zhao X C, Wang A Q, Yan J W, Sun J, Sun G, Zhang T. Chem. Mater., 2010, 22:5463.
[88] Wu Z X, Webley P A, Zhao D Y. Langmuir, 2010, 26:10277.
[89] Xing R, Liu Y M, Wang Y, Chen L, Wu H, Jiang Y, He M, Wu P. Micropor. Mesopor. Mater., 2007, 105:41.
[90] Xing R, Liu N, Liu Y M, Wu H H, Jiang Y W, Chen L, He M Y, Wu P. Adv. Funct. Mater., 2007, 17:2455.
[91] Peng L, Philippaerts A, Ke X X, Noyen J V, Clippel F D, Tendeloo G V, Jacobs P A, Sels B F. Catal. Today, 2010, 150:140.
[92] Janaun J, Ellis N. Appl. Catal. A: General, 2011, 394:25.
[93] Liu R, Wang X Q, Zhao X, Feng P Y. Carbon, 2008, 46:1664.
[94] Wu Z X, Hao N, Xiao G K, Liu L, Webley P, Zhao D. Phys. Chem. Chem. Phys., 2011, 13:2495.
[95] Li Q, Xu J, Wu Z X, Feng D, Yang J P, Wei J, Wu Q L, Tu B, Cao Y, Zhao D Y. Phys. Chem. Chem. Phys., 2010, 12:10996.
[96] Zhai Y P, Dou Y Q, Liu X X, Park S S, Ha C S, Zhao D Y. Carbon, 2011, 49:545.
[97] She L, Li J, Wan Y, Yao X D, Tu B, Zhao D Y. J. Mater. Chem., 2011, 21:795.
[98] Qian X F, Wan Y, Wen Y L, Wen Y, Jia N, Li H, Zhao D. J. Colloid. Interface. Sci., 2008, 328:367.
[99] Liu R L, Ren R J, Shi Y F, Zhang F, Zhang L J, Tu B, Zhao D Y. Chem. Mater., 2008, 20:1140.
[100] Liu L, Deng Q F, Ma T Y, Lin X Z, Hou X X, Yuan Z Y. J. Mater. Chem., 2011, 21:16001.
[101] Stohr B, Boehm H P, Schlogl R. Carbon, 1991, 37:707.
[102] Boehm H P, Mair G, Stoehr T, Rincón A R, Tereczki B. Fuel, 1984, 63:1061.
[103] Liu L, Deng Q F, Hou X X, Yuan Z Y. J. Mater. Chem., 2012, 22:15540.
[104] Hao G P, Li W C, Qian D, Lu A H. Adv. Mater., 2010, 22:853.
[105] Hao G P, Li W C, Qian D, Wang G H, Zhang W P, Zhang T, Wang A Q, Schüeth F, Bongard H J, Lu A H. J. Am. Chem. Soc., 2011, 133:11378.
[106] Wei J, Zhou D D, Sun Z K, Deng Y H, Xia Y Y, Zhao D Y. Adv. Funct. Mater., 2013, 23:2322.
[107] Wu Z X, Webley P A, Zhao D Y. J. Mater. Chem., 2012, 22:11379.
[108] Xia K S, Gao Q M, Wu C D, Song S Q, Ruan M L. Carbon, 2007, 45:1989.
[109] Xia Y D, Walker G S, Grant D M, Mokaya R. J. Am. Chem. Soc., 2009, 131:16493.
[110] Zhou H S, Zhu S S, Honma I, Seki K. Chem. Phys. Lett., 2004, 396:252.
[111] Vinu A, Miyahara M, Mori T, Ariga K. J. Porous Mater., 2006, 13:379.
[112] Ariga K, Vinu A, Miyahara M, Hill J P, Mori T. J. Am. Chem. Soc., 2007, 129:11022.
[113] Vinu A, Hossain K Z, Kumar G S, Ariga K. Carbon, 2006, 44:530.
[114] Zhuang X, Wan Y, Feng C M, Shen Y, Zhao D Y. Chem. Mater., 2009, 21:706.
[115] Guo L M, Zhang L X, Zhang J M, Zhou J, He Q J, Zeng S Z, Cui X Z, Shi J L. Chem. Commun., 2009, 6071.
[116] Valle-Vigoón P, Sevilla M, Fuertes A B. Chem. Mater., 2010, 22:2526.
[117] Vinu A, Streb C, Murugesan V, Hartmann M. J. Phys. Chem. B, 2003, 107:8297.
[118] Fang B Z, Kim J H, Lee C, Yu J S. J. Phys. Chem. C, 2008, 112:639.
[119] Carriazo D, Picó F, Gutiérrez M C, Rubio F, Rojoa J M, Monte F. J. Mater. Chem., 2010, 20:773.
[120] Ren T Z, Liu L, Zhang Y Y, Yuan Z Y. J. Solid State Electrochem., 2013, 17:927.
[121] Ren T Z, Liu L, Zhang Y Y, Yuan Z Y. J. Solid State Electrochem, 2013, 17:2223.
[122] Fan J, Wang T, Yu C Z, Tu B, Jiang Z, Zhao D Y. Adv. Mater., 2004, 16:1432.
[123] Zhang Y H, Wang A Q, Zhang T. Chem. Commun., 2010, 46:862.
[124] Liu X, Frank B, Zhang W, Cotter T P, Schlögl R, Su D S. Angew. Chem. Int. Ed., 2011, 50:3318.
[125] Su D S, Delgado J, Liu X, Wang D, Schlögl R, Wang L, Zhang Z, Shan Z, Xiao F S. Chem. Asian J., 2009, 4:1108.
[126] Wang L F, Zhang J, Su D S, Ji Y Y, Cao X J, Xiao F S. Chem. Mater., 2007, 19:2894.
[127] Liu L, Deng Q F, Agula B, Zhao X, Ren T Z, Yuan Z Y. Chem. Commun., 2011, 47:8334.
[128] Liu L, Deng Q F, Liu Y P, Ren T Z, Yuan Z Y. Catal. Commun., 2011, 16:81.
[129] Liu L, Deng Q F, Agula B, Ren T Z, Liu Y P, Zhaorigetu B, Yuan Z Y. Catal. Today, 2012, 186:35.
[130] Ma T Y, Liu L, Yuan Z Y. Chem. Soc. Rev., 2013, 42:3977.

[1] 李帅, 朱娜, 程扬健, 陈缔. NH3选择性催化还原NOx的铜基小孔分子筛耐硫性能及再生研究[J]. 化学进展, 2023, 35(5): 771-779.
[2] 王芷铉, 郑少奎. 选择性离子吸附原理与材料制备[J]. 化学进展, 2023, 35(5): 780-793.
[3] 徐怡雪, 李诗诗, 马晓双, 刘小金, 丁建军, 王育乔. 表界面调制增强铋基催化剂的光生载流子分离和传输[J]. 化学进展, 2023, 35(4): 509-518.
[4] 钱雪丹, 余伟江, 付濬哲, 王幽香, 计剑. 透明质酸基微纳米凝胶的制备及生物医学应用[J]. 化学进展, 2023, 35(4): 519-525.
[5] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[6] 李佳烨, 张鹏, 潘原. 在大电流密度电催化二氧化碳还原反应中的单原子催化剂[J]. 化学进展, 2023, 35(4): 643-654.
[7] 邵月文, 李清扬, 董欣怡, 范梦娇, 张丽君, 胡勋. 多相双功能催化剂催化乙酰丙酸制备γ-戊内酯[J]. 化学进展, 2023, 35(4): 593-605.
[8] 王丹丹, 蔺兆鑫, 谷慧杰, 李云辉, 李洪吉, 邵晶. 钼酸铋在光催化技术中的改性与应用[J]. 化学进展, 2023, 35(4): 606-619.
[9] 余抒阳, 罗文雷, 解晶莹, 毛亚, 徐超. 锂离子电池释热机理与模型及安全改性技术研究综述[J]. 化学进展, 2023, 35(4): 620-642.
[10] 刘雨菲, 张蜜, 路猛, 兰亚乾. 共价有机框架材料在光催化CO2还原中的应用[J]. 化学进展, 2023, 35(3): 349-359.
[11] 兰明岩, 张秀武, 楚弘宇, 王崇臣. MIL-101(Fe)及其复合物催化去除污染物:合成、性能及机理[J]. 化学进展, 2023, 35(3): 458-474.
[12] 李良春, 郑仁林, 黄毅, 孙荣琴. 多组分自组装小分子水凝胶中的自分类组装[J]. 化学进展, 2023, 35(2): 274-286.
[13] 李锋, 何清运, 李方, 唐小龙, 余长林. 光催化产过氧化氢材料[J]. 化学进展, 2023, 35(2): 330-349.
[14] 邬学贤, 张岩, 叶淳懿, 张志彬, 骆静利, 符显珠. 面向电子应用的聚合物化学镀前表面处理技术[J]. 化学进展, 2023, 35(2): 233-246.
[15] 范克龙, 高利增, 魏辉, 江冰, 王大吉, 张若飞, 贺久洋, 孟祥芹, 王卓然, 樊慧真, 温涛, 段德民, 陈雷, 姜伟, 芦宇, 蒋冰, 魏咏华, 李唯, 袁野, 董海姣, 张鹭, 洪超仪, 张紫霞, 程苗苗, 耿欣, 侯桐阳, 侯亚欣, 李建茹, 汤国恒, 赵越, 赵菡卿, 张帅, 谢佳颖, 周子君, 任劲松, 黄兴禄, 高兴发, 梁敏敏, 张宇, 许海燕, 曲晓刚, 阎锡蕴. 纳米酶[J]. 化学进展, 2023, 35(1): 1-87.
阅读次数
全文


摘要

软模板合成有序介孔碳材料