English
新闻公告
More
化学进展 2014, Vol. 26 Issue (06): 1050-1064 DOI: 10.7536/PC131115 前一篇   后一篇

• 综述与评论 •

基于微流控技术的单细胞生物物理特性表征

唐文来, 项楠, 黄笛, 张鑫杰, 顾兴中, 倪中华*   

  1. 东南大学 江苏省微纳生物医疗器械设计与制造重点实验室 南京 211189
  • 收稿日期:2013-11-01 修回日期:2014-02-01 出版日期:2014-06-15 发布日期:2014-03-31
  • 通讯作者: 倪中华 E-mail:nzh2003@seu.edu.cn
  • 基金资助:

    国家重点基础研究发展计划(973)项目(No.2011CB707601)、国家自然科学基金项目(No.91023024,51375089)、高等学校博士学科点专项科研基金项目(No.20110092110003)和江苏省自然科学基金项目(No.BK2011336)资助

Microfluidics-Based Single-Cell Biophysical Characterization

Tang Wenlai, Xiang Nan, Huang Di, Zhang Xinjie, Gu Xingzhong, Ni Zhonghua*   

  1. Jiangsu Key Laboratory for Design and Manufacture of Micro-Nano Biomedical Instruments, Southeast University, Nanjing 211189, China
  • Received:2013-11-01 Revised:2014-02-01 Online:2014-06-15 Published:2014-03-31
  • Supported by:

    The work was supported by the National Basic Research Program of China (No.2011CB707601), the National Natural Science Foundation of China (No.91023024, 51375089), the Specialized Research Fund for the Doctoral Program of Higher Education (No.20110092110003) and the Natural Science Foundation of Jiangsu Province (No.BK2011336)

单细胞水平的生物物理特性表征,可有效阐明细胞的功能和状态,揭示细胞的单体差异性,对于细胞的分化和病理研究,以及疾病的早期临床诊断和治疗具有非常重要的意义。由于具有与细胞尺度相匹配的微米级腔道,微流控芯片比传统生化方法更适合单细胞样本的微环境精确控制、高通量定向操纵及多参数非特异性检测,已成为单细胞表征与分析的一项重要技术平台。本文总结了基于微流控技术的单细胞生物物理特性表征方法及其应用的最新进展,着重分析微流控芯片在常规方法难以达成的单细胞和高通量研究中的独特优势,最后探讨了微流控单细胞生物物理特性检测芯片在临床应用中面临的挑战和未来的发展动向,并提出一种新型的单细胞多参数同时表征的微流控分析器件。

Single-cell biophysical characterization has been widely employed for demonstrating the physiological activity and status of individual cells, or revealing the heterogeneity among various populations. It also plays an important role in the studies on cellular differentiation and pathology, as well as early clinical diagnosis and treatment. Compared to conventional biochemical schemes, the feature of scale compatibility between cell and microchannel makes microfluidics more suitable for precise microenvironment control, high-throughput manipulation, and multi-parameter label-free detection of individual cells. Therefore, microfluidics has become an important platform for single-cell characterization and analysis. This review covers the recent advances in microfluidics for characterizing the single-cell biophysical properties, and then focuses on the discussion of specific advantages, such as single-cell resolution level and high-throughput feature, offered by microfluidics. Finally, the challenges and future directions concerning the application of this scheme in clinical practices are also discussed, and a novel single-cell microdevice for multi-parameter characterization is proposed.

Contents
1 Introduction
2 Density(Mass) characterization
3 Electrical characterization
3.1 Microfluidic Coulter counter
3.2 Microfluidic impedance cytometer
4 Mechanical characterization
4.1 Optical stretcher
4.2 Electroporation-induced deformation
4.3 Structure-induced deformation
4.4 Fluid-induced deformation
5 Multi-parameter biophysical characterization
6 Conclusion and outlook

中图分类号: 

()

[1] Lee G Y H, Lim C T. Trends Biotechnol., 2007, 25: 111.
[2] Suresh S. Acta Biomater., 2007, 3: 413.
[3] Valero A, Braschler T, Renaud P. Lab Chip, 2010, 10: 2216.
[4] Di Carlo D. J. Lab. Autom., 2012, 17: 32.
[5] Cross S E, Jin Y S, Rao J, Gimzewski J K. Nat. Nanotechnol., 2007, 2: 780.
[6] Kuznetsova T G, Starodubtseva M N, Yegorenkov N I, Chizhik S A, Zhdanov R I. Micron, 2007, 38: 824.
[7] Hochmuth R M. J. Biomech., 2000, 33: 15.
[8] Shojaei-Baghini E, Zheng Y, Jewett M A S, Geddie W B, Sun Y. Appl. Phys. Lett., 2013, 102: 123704.
[9] Dao M, Lim C T, Suresh S. J. Mech. Phys. Solids, 2003, 51: 2259.
[10] Bausch A R, Ziemann F, Boulbitch A A, Jacobson K, Sackmann E. Biophys. J., 1998, 75: 2038.
[11] Hamill O P, Marty A, Neher E, Sakmann B, Sigworth F J. Pfluegers Arch., 1981, 391: 85.
[12] 杨频(Yang P),杜会枝(Du H Z),薛绍武(Xue S W). 化学进展(Progress in Chemistry), 2002, 14(4):251.
[13] Whitesides G M. Nature, 2006, 442: 368.
[14] Yin H B, Marshall D. Curr. Opin. Biotechnol., 2012, 23: 110.
[15] Zare R N, Kim S. Annu. Rev. Biomed. Eng., 2010, 12: 187.
[16] 王立凯(Wang L K),冯喜增(Feng X Z). 化学进展(Progress in Chemistry), 2005, 17(3): 482.
[17] 郝丽(Hao L),徐春秀(Xu C X),程和勇(Cheng H Y),刘金华(Liu J H),殷学锋(Yin X F). 化学进展(Progress in Chemistry), 2012, 24(8): 1544.
[18] 高健(Gao J),殷学锋(Yin X F),方肇伦(Fang Z L). 化学进展(Progress in Chemistry), 2004, 16(6): 975.
[19] Sun T, Morgan H. Microfluid. Nanofluid., 2010, 8: 423.
[20] Zheng Y, Sun Y. Micro Nano Lett., 2011, 6: 327.
[21] Mao X, Huang T J. Lab Chip, 2012, 12: 4006.
[22] Sha J, Hasan T, Milana S, Bertulli C, Bell N A W, Privitera G, Ni Z, Chen Y, Bonaccorso F, Ferrari A C, Keyser U F, Huang Y Y S. ACS Nano, 2013, 7: 8857.
[23] Zhang Y, Liu L, Sha J J, Ni Z H, Yi H, Chen Y F. Nanoscale Res. Lett., 2013, 8: 245.
[24] Chen K, Xiang N, Quan Y L, Zhu X L, Sun D K, Yi H, Ni Z H. Microfluid. Nanofluid., 2014, 16: 237.
[25] Zhu X L, Yi H, Ni Z H. Biomicrofluidics, 2010, 4: 013202.
[26] 朱晓璐(Zhu X L),倪中华(Ni Z H). 东南大学学报(自然科学版)Journal of Southeast University(Natural Science Edition), 2007, 37(5): 861.
[27] 项楠(Xiang N),朱晓璐(Zhu X L),倪中华(Ni Z H). 化学进展(Progress in Chemistry), 2011, 23(9): 1945.
[28] Xiang N, Chen K, Sun D K, Wang S F, Yi H, Ni Z H. Microfluid. Nanofluid., 2013, 14: 89.
[29] Xiang N, Yi H, Chen K, Sun D K, Jiang D, Dai Q, Ni Z H. Biomicrofluidics, 2013, 7: 044116.
[30] Maric D, Maric I, Barker J L. Methods, 1998, 16: 247.
[31] Martin S J, Bradley J G, Cotter T G. Clin. Exp. Immunol., 1990, 79: 448.
[32] Wyllie A H, Morris R G. Am. J. Pathol., 1982, 109: 78.
[33] Rodgers G P, Schechter A N, Noguchi C T. J. Lab. Clin. Med., 1985, 106: 30.
[34] Bosslet K, Ruffmann R, Altevogt P, Schirrmacher V. Br. J. Cancer., 1981, 44: 356.
[35] Burg T P, Godin M, Knudsen S M, Shen W, Carlson G, Foster J S, Babcock K, Manalis S R. Nature, 2007, 446: 1066.
[36] Godin M, Delgado F F, Son S M, Grover W H, Bryan A K, Tzur A, Jorgensen P, Payer K, Grossman A D, Kirschner M W, Manalis S R. Nat. Methods, 2010, 7: 387.
[37] Son S, Tzur A, Weng Y, Jorgensen P, Kim J, Kirschner M W, Manalis S R. Nat. Methods, 2012, 9: 910.
[38] Godin M, Bryan A K, Burg T P, Babcock K, Manalis S R. Appl. Phys. Lett., 2007, 91: 123121.
[39] Bryan A K, Goranov A, Amon A, Manalis S R. Proc. Natl. Acad. Sci. U. S. A., 2010, 107: 999.
[40] Grover W H, Bryan A K, Diez-Silva M, Suresh S, Higgins J M, Manalis S R. Proc. Natl. Acad. Sci. U. S. A., 2011, 108: 10992.
[41] Weng Y C, Delgado F F, Son S, Burg T P, Wasserman S C, Manalis S R. Lab Chip, 2011, 11: 4174.
[42] Huang Y, Wang X B, Holzel R, Becker F F, Gascoyne P R C. Phys. Med. Biol., 1995, 40: 1789.
[43] Dalton C, Goater A D, Burt J P H, Smith H V. J. Appl. Microbiol., 2004, 96: 24.
[44] Jang L S, Wang M H. Biomed. Microdevices, 2007, 9: 737.
[45] Kurz C V, Buth H, Sossalla A, Vermeersch V, Toncheva V, Dubruel P, Schacht E, Thielecke H. Biosens. Bioelectron., 2011, 26: 3405.
[46] Larsen U D, Blankenstein G, Branebjerg J. 1997 International Conference on Solid-State Sensors and Actuators. Chicago: IEEE, 1997. 1319.
[47] Saleh O A, Sohn L L. Rev. Sci. Instrum., 2001, 72: 4449.
[48] Saleh O A, Sohn L L. Nano Lett., 2003, 3: 37.
[49] Satake D, Ebi H, Oku N, Matsuda K, Takao H, Ashiki M, Ishida M. Sens. Actuators B, 2002, 83: 77.
[50] Zheng S Y, Liu M, Tai Y C. Biomed. Microdevices, 2008, 10: 221.
[51] Chun H G, Chung T D, Kim H C. Anal. Chem., 2005, 77: 2490.
[52] Kim K B, Chun H, Kim H C, Chun T D. Electrophoresis, 2009, 30: 1464.
[53] Choi H, Kim K B, Jeon C S, Hwang I, Lee S, Kim H K, Kim H C, Chung T D. Lab Chip, 2013, 13: 970.
[54] Deblois R W, Bean C P. Rev. Sci. Instrum., 1970, 41: 909.
[55] Nieuwenhuis J H, Kohl F, Bastemeijer J, Sarro P M, Vellekoop M J. Sens. Actuators B, 2004, 102: 44.
[56] Riordon J, Mirzaei M, Godin M. Lab Chip, 2012, 12: 3016.
[57] Jagtiani A V, Sawant R, Zhe J. J. Micromech. Microeng., 2006, 16: 1530.
[58] Zhe J, Jagtiani A, Dutta P, Hu J, Carletta J. J. Micromech. Microeng., 2007, 17: 304.
[59] Asghar W, Wan Y, Ilyas A, Bachoo R, Kim Y T, Iqbal S M. Lab Chip, 2012, 12: 2345.
[60] Pethig R, Kell D B. Phys. Med. Biol., 1987, 32: 933.
[61] Gawad S, Schild L, Renaud P. Lab Chip, 2001, 1: 76.
[62] Ayliffe H E, Frazier A B, Rabbitt R D. J. Microelectromech. Syst., 1999, 8: 50.
[63] Cheung K, Gawad S, Renaud P. Cytometry, Part A, 2005, 65A: 124.
[64] Sun T, Green N G, Gawad S, Morgan H. IET Nanobiotechnol., 2007, 1: 69.
[65] Schade-Kampmann G, Huwiler A, Hebeisen M, Hessler T, Di Berardino M. Cell Proliferation, 2008, 41: 830.
[66] Holmes D, Pettigrew D, Reccius C H, Gwyer J D, van Berkel C, Holloway J, Davies D E, Morgan H. Lab Chip, 2009, 9: 2881.
[67] van Berkel C, Gwyer J D, Deane S, Green N, Holloway J, Hollis V, Morgan H. Lab Chip, 2011, 11: 1249.
[68] Spencer D, Morgan H. Lab Chip, 2011, 11: 1234.
[69] Morgan H, Holmes D, Green N G. Curr. Appl. Phys., 2006, 6: 367.
[70] Watkins N, Venkatesan B M, Toner M, Rodriguez W, Bashir R. Lab Chip, 2009, 9: 3177.
[71] Mernier G, Duqi E, Renaud P. Lab Chip, 2012, 12: 4344.
[72] Evander M, Ricco A J, Morser J, Kovacs G T A, Leung L L K, Giovangrandi L. Lab Chip, 2013, 13: 722.
[73] Gou H L, Zhang X B, Bao N, Xu J J, Xia X H, Chen H Y. J. Chromatogr., A, 2011, 1218: 5725.
[74] Kang G, Yoo S K, Kim H I, Lee J H. IEEE Sens. J., 2012, 12: 1084.
[75] Barat D, Spencer D, Benazzi G, Mowlem M C, Morgan H. Lab Chip, 2012, 12: 118.
[76] Song H, Wang Y, Rosano J M, Prabhakarpandian B, Garson C, Pant K, Lai E. Lab Chip, 2013, 13: 2300.
[77] Lamontagne C A, Cuerrier C M, Grandbois M. Pfluegers Arch., 2008, 456: 61.
[78] Fletcher D A, Mullins D. Nature, 2010, 463: 485.
[79] Li Q S, Lee G Y H, Ong C N, Lim C T. Biochem. Biophys. Res. Commun., 2008, 374: 609.
[80] Barabino G A, Platt M O, Kaul D K. Annu. Rev. Biomed. Eng., 2010, 12: 345.
[81] Baskurt O K, Gelmont D, Meiselman H J. Am. J. Respir. Crit. Care Med., 1998, 157: 421.
[82] Bow H, Pivkin I V, Diez-Silva M, Goldfless S J, Dao M, Niles J C, Suresh S, Han J Y. Lab Chip, 2011, 11: 1065.
[83] Brown C D, Ghali H S, Zhao Z H, Thomas L L, Friedman E A. Kidney Int., 2005, 67: 295.
[84] Keymel S, Heiss C, Kleinbongard P, Kelm M, Lauer T. Horm. MeTab. Res., 2011, 43: 760.
[85] Ballas S K, Smith E D. Blood, 1992, 79: 2154.
[86] Doh I, Lee W C, Cho Y H, Pisano A P, Kuypers F A. Appl. Phys. Lett., 2012, 100: 173702.
[87] Polacheck W J, Li R, Uzel S G M, Kamm R D. Lab Chip, 2013, 13: 2252.
[88] Lin L A G, Liu A Q, Yu Y F, Zhang C, Lim C S, Ng S H, Yap P H, Gao H J. Appl. Phys. Lett., 2008, 92: 233901.
[89] Liang X M, Han S J, Reems J A, Gao D Y, Sniadecki N J. Lab Chip, 2010, 10: 991.
[90] Schoen I, Hu W, Klotzsch E, Vogel V. Nano Lett., 2010, 10: 1823.
[91] Guck J, Ananthakrishnan R, Moon T J, Cunningham C C, Kas J. Phys. Rev. Lett., 2000, 84: 5451.
[92] Guck J, Ananthakrishnan R, Mahmood H, Moon T J, Cunningham C C, Kas J. Biophys. J., 2001, 81: 767.
[93] Lincoln B, Erickson H M, Schinkinger S, Wottawah F, Mitchell D, Ulvick S, Bilby C, Guck J. Cytometry, Part A, 2004, 59A: 203.
[94] Guck J, Schinkinger S, Lincoln B, Wottawah F, Ebert S, Romeyke M, Lenz D, Erickson H M, Ananthakrishnan R, Mitchell D, Kas J, Ulvick S, Bilby C. Biophys. J., 2005, 88: 3689.
[95] Lai C W, Hsiung S K, Chen Y Q, Chiou A, Lee G B. J. Microelectromech. Syst., 2008, 17: 548.
[96] Bellini N, Vishnubhatla K C, Bragheri F, Ferrara L, Minzioni P, Ramponi R, Cristiani I, Osellame R. Opt. Express, 2010, 18: 4679.
[97] Lautenschlager F, Paschke S, Schinkinger S, Bruel A, Beil M, Guck J. Proc. Natl. Acad. Sci. U. S. A., 2009, 106: 15696.
[98] Wang M Y, Orwar O, Olofsson J, Weber S G. Anal. Bioanal. Chem., 2010, 397: 3235.
[99] Geng T, Lu C. Lab Chip, 2013, 13: 3803.
[100] Bao N, Zhan Y H, Lu C. Anal. Chem., 2008, 80: 7714.
[101] Bao N, Le T T, Cheng J X, Lu C. Integr. Biol., 2010, 2: 113.
[102] Bao N, Kodippili G C, Giger K M, Fowler V M, Low P S, Lu C. Lab Chip, 2011, 11: 3053.
[103] Henslee B E, Morss A, Hu X, Lafyatis G P, Lee L J. Anal. Chem., 2011, 83: 3998.
[104] Tsukada K, Sekizuka E, Oshio C, Minamitani H. Microvasc. Res., 2001, 61: 231.
[105] Shelby J P, White J, Ganesan K, Rathod P K, Chiu D T. Proc. Natl. Acad. Sci. U. S. A., 2003, 100: 14618.
[106] Rosenbluth M J, Lam W A, Fletcher D A. Lab Chip, 2008, 8: 1062.
[107] Hou H W, Li Q S, Lee G Y H, Kumar A P, Ong C N, Lim C T. Biomed. Microdevices, 2009, 11: 557.
[108] Guo Q, Reiling S J, Rohrbach P, Ma H S. Lab Chip, 2012, 12: 1143.
[109] Guo Q, Park S, Ma H. Lab Chip, 2012, 12: 2687.
[110] Huang S, Undisz A, Diez-Silva M, Bow H, Dao M, Han J Y. Integr. Biol., 2013, 5: 414.
[111] Lee W G, Bang H, Yun H, Lee J, Park J, Kim J K, Chung S, Cho K, Chung C, Han D C, Chang J K. Lab Chip, 2007, 7: 516.
[112] Adamo A, Sharei A, Adamo L, Lee B, Mao S, Jensen K F. Anal. Chem., 2012, 84: 6438.
[113] Guan G F, Chen P C Y, Peng W K, Bhagat A A, Ong C J, Han J Y. J. Micromech. Microeng., 2012, 22: 105037.
[114] Preira P, Valignat M P, Bico J, Theodoly O. Biomicrofluidics, 2013, 7: 024111.
[115] Gossett D R, Tse H T K, Lee S A, Ying Y, Lindgren A G, Yang O O, Rao J Y, Clark A T, Di Carlo D. Proc. Natl. Acad. Sci. U. S. A., 2012, 109: 7630.
[116] Dudani J S, Gossett D R, Tse H T K, Di Carlo D. Lab Chip, 2013, 13: 3728.
[117] Bransky A, Korin N, Nemirovski Y, Dinnar U. Biosens. Bioelectron., 2006, 22: 165.
[118] Forsyth A M, Wan J D, Ristenpart W D, Stone H A. Microvasc. Res., 2010, 80: 37.
[119] Lee S S, Yim Y, Ahn K H, Lee S J. Biomed. Microdevices, 2009, 11: 1021.
[120] Tomaiuolo G, Barra M, Preziosi V, Cassinese A, Rotoli B, Guido S. Lab Chip, 2011, 11: 449.
[121] Cha S, Shin T, Lee S S, Shim W, Lee G, Lee S J, Kim Y, Kim J M. Anal. Chem., 2012, 84: 10471.
[122] Zheng Y, Nguyen J, Wang C, Sun Y. Lab Chip, 2013, 13: 3275.
[123] Pang L, Chen H M, Freeman L M, Fainman Y. Lab Chip, 2012, 12: 3543.
[124] Katsumoto Y, Tatsumi K, Doi T, Nakabe K. Int. J. Heat Fluid Flow, 2010, 31: 985.
[125] Byun S, Son S, Amodei D, Cermak N, Shaw J, Kang J H, Hecht V C, Winslow M M, Jacks T, Mallick P, Manalis S R. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 7580.
[126] Cho Y H, Yamamoto T, Sakai Y, Fujii T, Kim B. J. Microelectromech. Syst., 2006, 15: 287.
[127] Chen J A, Zheng Y, Tan Q Y, Zhang Y L, Li J, Geddie W R, Jewett M A S, Sun Y. Biomicrofluidics, 2011, 5: 14113.
[128] Zheng Y, Shojaei-Baghini E, Azad A, Wang C, Sun Y. Lab Chip, 2012, 12: 2560.
[129] Sha J J, Ni Z H, Liu L, Yi H, Chen Y F. Nanotechnology, 2011, 22: 175304.
[130] Xiang N, Yi H, Chen K, Wang S F, Ni Z H. J. Micromech. Microeng., 2013, 23: 025016.
[131] Li J P, Zhang Y, Yang J K, Bi K D, Ni Z H, Li D Y, Chen Y F. Phys. Rev. E: Stat., Nonlinear, Soft Matter Phys., 2013, 87: 062707.
[132] Sun D K, Wang Y, Jiang D, Xiang N, Chen K, Ni Z H. Appl. Phys. Lett., 2013, 103: 071905.

[1] 李炜, 梁添贵, 林元创, 吴伟雄, 李松. 机器学习辅助高通量筛选金属有机骨架材料[J]. 化学进展, 2022, 34(12): 2619-2637.
[2] 张丹丹, 吴琪, 曲广波, 史建波, 江桂斌. 单细胞水生生物金属纳米颗粒的定量分析[J]. 化学进展, 2022, 34(11): 2331-2339.
[3] 张芳娟, 刘海兵, 高梦琪, 王德富, 牛颜冰, 申少斐. 浓度梯度微流控芯片在药物筛选中的应用[J]. 化学进展, 2021, 33(7): 1138-1151.
[4] 侯晓涵, 刘胜男, 高清志. 小分子荧光探针在绿色农药开发中的应用[J]. 化学进展, 2021, 33(6): 1035-1043.
[5] 陈怡峰, 王聪, 任科峰, 计剑. 生物医用高通量研究中的微液滴阵列[J]. 化学进展, 2021, 33(4): 543-554.
[6] 冯迪, 王广华, 唐文来, 杨继全. 微流控阻抗流式细胞仪在单细胞检测中的应用[J]. 化学进展, 2021, 33(4): 555-567.
[7] 杨冬, 高可奕, 杨百勤, 雷蕾, 王丽霞, 薛朝华. 微流控合成体系的装置分类及其用于纳米粒子的制备[J]. 化学进展, 2021, 33(3): 368-379.
[8] 蒋炳炎, 彭涛, 袁帅, 周明勇. 微流控芯片上的颗粒被动聚焦技术[J]. 化学进展, 2021, 33(10): 1780-1796.
[9] 蔡乐斯, 夏梦婵, 李展平, 张四纯, 张新荣. 二次离子质谱生物成像[J]. 化学进展, 2021, 33(1): 97-110.
[10] 武江洁星, 魏辉. 浅谈纳米酶的高效设计策略[J]. 化学进展, 2021, 33(1): 42-51.
[11] 倪陈, 姜迪, 徐幼林, 唐文来. 黏弹性流体在微粒被动操控技术中的应用[J]. 化学进展, 2020, 32(5): 519-535.
[12] 李慧调, 潘建章, 方群. 数字PCR技术的发展及应用[J]. 化学进展, 2020, 32(5): 581-593.
[13] 李悦, 李景虹. 基于CRISPR的生物分析化学技术[J]. 化学进展, 2020, 32(1): 5-13.
[14] 刘萍, 汪璟, 郝鸿业, 薛云帆, 黄俊杰, 计剑. 光化学反应在生物材料表面修饰中的应用[J]. 化学进展, 2019, 31(10): 1425-1439.
[15] 刘一寰, 胡欣, 朱宁, 郭凯. 基于微流控技术制备微/纳米粒子材料[J]. 化学进展, 2018, 30(8): 1133-1142.