English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 706-726 DOI: 10.7536/PC131051 前一篇   后一篇

• 综述与评论 •

三重和四重氢键体系:设计、结构和应用

杨勇*, 窦丹丹   

  1. 浙江理工大学 杭州 310018
  • 收稿日期:2013-10-01 修回日期:2013-11-01 出版日期:2014-05-15 发布日期:2013-03-13
  • 通讯作者: 杨勇,e-mail:yangyong@zstu.edu.cn E-mail:yangyong@zstu.edu.cn
  • 基金资助:

    国家自然科学基金项目(No. 91227105);浙江省自然科学基金项目(No. LY12B02021);教育部留学回国人员科研启动基金和浙江理工大学“应用化学与生态染整工程”浙江省高校重中之重学科优秀青年人才培养基金(No. ZYG2011001)和“521人才培养计划”资助

Triply and Quadruply Hydrogen Bonded Systems:Design, Structure and Application

Yang Yong*, Dou Dandan   

  1. Zhejiang Sci-Tech University, Hangzhou 310018, China
  • Received:2013-10-01 Revised:2013-11-01 Online:2014-05-15 Published:2013-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 91227105), the Natural Science Foundation of Zhejiang Province, China (No. LY12B02021), the Scientific Research Foundation for the Returned Overseas Chinese Scholars (Ministry of Education), Zhejiang Provincial Top Academic Discipline of Applied Chemistry and Eco-Dyeing & Finishing Engineering (No. ZYG2011001), and 521 Talent Program of Zhejiang Sci-Tech University.

氢键是超分子化学领域具有特别重要地位的一种非共价作用。近年来,通过氢键自组装制备超分子聚合物已经成为超分子化学的一个热门研究领域。构筑性能优良的多重氢键体系奠定了这个领域的研究基础。其中,三重和四重氢键体系在构筑超分子组装体方面得到了广泛应用。本文综述了三重氢键、 四重氢键组装体系的研究进展及其应用,重点介绍了各种三重氢键、四重氢键体系的设计思路和影响其稳定性的各种因素。

Hydrogen bonding is a kind of noncovalent interaction that holds a very important position in the field of supramolecular chemistry. In the past few years, hydrogen bonding mediated supramolecular polymer has become a hot research topic in supramolecular chemistry. The construction of excellent hydrogen bonding building blocks lies the basis for the area. Among that, triply and quadruply hydrogen bonded systems are widely used for the construction of supramolecular assemblies. In this article, we summarize the progress and applications of triply and quadruply hydrogen bonded systems. We put our emphasis on the design principles of such systems and the factors affecting the stability of each system.

Contents
1 Introduction
2 Triply hydrogen bonded systems and their
applications
2.1 ADA·DAD triply hydrogen bonded systems
2.2 DDA·AAD triply hydrogen bonded systems
2.3 DDD·AAA triply hydrogen bonded systems
3 Quadruply hydrogen bonded systems and their applications
3.1 Quadruply hydrogen bonded systems of separated hydrogen bonding building blocks
3.2 Self-complementary quadruply hydrogen bonded system with DADA·ADAD hydrogen bonding sites
3.3 Self-complementary quadruply hydrogen bonded system with DDAA·AADD hydrogen bonding sites
3.4 Complementary quadruply hydrogen bonded system with DAAD·ADDA hydrogen bonding sites
3.5 Quadruply hydrogen bonded system with AAAA·DDDD hydrogen bonding sites
3.6 Quadruply hydrogen-bonded molecular duplexes free of secondary electrostatic interactions
3.7 Other quadruply hydrogen bonded systems
4 Conclusion and outlook

中图分类号: 

()

[1] Steed J W, Atwood J L. Supramolecular Chemistry. 2nd ed. NY: John Wiley-Sons Ltd., 2008.
[2] Prins L J, Reinhoudt D N, Timmerman P. Angew. Chem. Int. Ed., 2001, 40: 2382.
[3] Jorgensen W L, Pranata J. J. Am. Chem. Soc., 1990, 112: 2008.
[4] Pranata J, Wierschke S G, Jorgensen W L. J. Am. Chem. Soc., 1991, 113: 2810.
[5] Murray T J, Zimmerman S C. J. Am. Chem. Soc., 1992, 114: 4010.
[6] Zimmerman S C, Murray T J. Tetrahedron Lett., 1994, 35: 4077.
[7] Sartorius J, Schneider H J. Chem. Eur. J., 1996, 2: 1446.
[8] Sijbesma R P, Meijer E W. Chem. Commun., 2003, 5.
[9] Zimmerman S C, Corbin P S. in Structure and Bonding (Berlin), 2000, 96: 63.
[10] 黄飞鹤(Huang F H), 翟春熙(Zhai C X), 郑波(Zheng B), 李世军(Li S J). 超分子聚合物(Supramolecular Polymers). 杭州: 浙江大学出版社(Hangzhou: Zhejiang University Press), 2012.
[11] Yan X, Wang F, Zheng B, Huang F. Chem. Soc. Rev., 2012, 41: 6042.
[12] Zheng B, Wang F, Dong S, Huang F. Chem. Soc. Rev., 2012, 41: 1621.
[13] De Greef T F A, Meijer E W. Nature, 2008, 453: 171.
[14] De Greef T F A, Smulders M M J, Wolffs M, Schenning A P H J, Sijbesma R P, Meijer E W. Chem. Rev., 2009, 109: 5687.
[15] Aida T, Meijer E W, Stupp S I. Science, 2012, 335: 813.
[16] Yang S K, Zimmerman S C. Isr. J. Chem., 2013, 53: 511.
[17] Feibush B, Figueroa A, Charles R, Onan K D, Feibush P, Karger B L. J. Am. Chem. Soc., 1986, 108: 3310.
[18] Hamilton A D, van Engen D. J. Am. Chem. Soc., 1987, 109: 5035.
[19] Kyogoku Y, Lord R C, Rich A. Proc. Natl. Acad. Sci. U. S. A., 1967, 57: 250.
[20] Park T K, Schroeder J, Rebek J. J. Am. Chem. Soc., 1991, 113: 5125.
[21] Kelly T R, Bridger G J, Zhao C. J. Am. Chem. Soc., 1990, 112: 8024.
[22] Beijer F H, Sijbesma R P, Vekemans J A J M, Meijer E W, Kooijman H, Spek A L. J. Org. Chem., 1996, 61: 6371.
[23] Fouquey C, Lehn J M, Levelut A M. Adv. Mater., 1990, 2: 254.
[24] Lehn J M. Makromol. Chem. Macromol. Symp., 1993, 69: 1.
[25] Gulik-Krzywicki T, Fouquey C, Lehn J M. Proc. Natl. Acad. Sci. U. S. A., 1993, 90: 163.
[26] Kotera M, Lehn J M, Vigneron J P. J. Chem. Soc. Chem. Commun., 1994, 2: 197.
[27] Kotera M, Lehn J M, Vigneron J P. Tetrahedron, 1995, 51: 1953.
[28] Chang S K, Hamilton A D. J. Am. Chem. Soc., 1988, 110: 1318.
[29] Chang S K, Ungen D V, Hamilton A D. J. Am. Chem. Soc., 1991, 113: 7640.
[30] Kelly T R, Zhao C, Bridger G J. J. Am. Chem. Soc., 1989, 111: 3744.
[31] Hisamatsu Y, Fukumi Y, Shirai N, Ikeda S I, Odashima K. Tetrahedron Lett., 2008, 49: 2005.
[32] McGhee A M, Kilner C, Wilson A J. Chem. Commun., 2008, 344.
[33] Gooch A, McGhee A M, Pellizzaro M L, Lindsay C I, Wilson A J. Org. Lett., 2011, 13: 240.
[34] Gooch A, Barrett S, Fisher J, Lindsay C I, Wilson A J. Org. Biomol. Chem., 2011, 9: 5938.
[35] Murray T J, Zimmerman S C, Kolotuchin S V. Tetrahedron Lett., 1995, 51: 635.
[36] Bell D A, Anslyn E V. Tetrahedron Lett., 1995, 51: 7161.
[37] Djurdjevic S, Leigh D A, McNab H, Parsons S, Teobaldi G, Zerbetto F. J. Am. Chem. Soc., 2007, 129: 476.
[38] Blight B A, Camara-Campos A, Djurdjevic S, Kaller M, Leigh D A, McMillan F M, McNab H, Slawin A M Z. J. Am. Chem. Soc., 2009, 131: 14116.
[39] Wang H B, Mudraboyina B P, Li J X, Wisner J A. Chem. Commun., 2010, 46: 7343.
[40] Wang H B, Mudraboyina B P, Wisner J A. Chem. Eur. J., 2012, 18: 1322.
[41] 齐志奇(Qi Z Q), 邵学斌(Shao X B), 赵新(Zhao X), 李晓强(Li X Q), 王晓钟(Wang X Z), 张未星(Zhang W X), 蒋锡夔(Jiang X K), 黎占亭(Li Z T). 有机化学(Organic Chemistry), 2003, 5: 403.
[42] Ducharme Y, Wuest J D. J. Org. Chem., 1988, 53: 5787.
[43] Wash P L, Maverick E, Chiefari J, Lightner D A. J. Am. Chem. Soc., 1997, 119: 3802.
[44] Griffin R J, Lowe P R. J. Chem. Soc. Perkin Trans. 1, 1992: 1811.
[45] Beijer F H, Kooijman H, Spek A L, Sijbesma R P, Meijer E W. Angew. Chem. Int. Ed., 1998, 37: 75.
[46] Hirschberg J H K K, Brunsveld L, Ramzi A, Vekemans J A J M, Sijbesma R P, Meijer E W. Nature, 2000, 407: 167.
[47] Brunsveld L, Vekemans J A J M, Hirschberg J H K K, Sijbesma R P, Meijer E W. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 4977.
[48] Yang Y, Yan H J, Chen C F, Wan L J. Org. Lett., 2007, 9: 4991.
[49] Martin A M, Butler R S, Ghiviriga I, Giessert R E, Abboud K A, Castellano R K. Chem. Commun, 2006, 42: 4413.
[50] Li J, Wisner J A, Jennings M C. Org. Lett., 2007, 9: 3267.
[51] Li J, Pandelieva A T, Rowley C N, Woo T K, Wisner J A. Org. Lett., 2012, 14: 5772.
[52] Taylor A, Berryman V E J, Boyd R J. J. Phys. Chem. A, 2012, 116: 7965.
[53] Sijbesma R P, Beijer F H, Brunsveld L, Folmer B J B, Hirschberg J H K K, Meijer E W. Science, 1997, 278: 1601.
[54] Beijer F H, Sijbesma R P, Kooijman H, Spek A L, Meijer E W. J. Am. Chem. Soc., 1998, 120: 6761.
[55] Keizer H M, Sijbesma R P, Meijer E W. Eur. J. Org., 2004, 12: 2553.
[56] Soentjens S H M, Sijbesma R P, van Genderen M H P, Meijer E W. J. Am. Chem. Soc., 2000, 122: 7487.
[57] Ikegami M, Arai T. Chem. Lett., 2001, 7: 694.
[58] Ohshiro I, Ikegami M, Nishimura Y, Arai T. Bull. Chem. Soc. Jpn., 2006, 79: 1950.
[59] Guo D, Sijbesma R P, Zuilhof H. Org. Lett., 2004, 6: 3667.
[60] Wang X Z, Li X Q, Shao X B, Zhao X, Deng P, Jiang X K, Li Z T, Chen Y Q. Chem. Eur. J., 2003, 9: 2904.
[61] Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W. J. Am. Chem. Soc., 2005, 127: 810.
[62] Wang S, Wu L, Zhang L, Tung C. Chin. Sci. Bull., 2006, 51: 129.
[63] Sánchez L, Martín N, Guldi D M. Angew. Chem. Int. Ed., 2005, 44: 5374.
[64] Rispens M T, Sanchez L, Knol J, Hummelen J C. Chem. Commun., 2001, 2: 161.
[65] Gonzalez J J, Gonzalez S, de Mendoza J, Priego E M, Martin N, Luo C P, Guldi D M. Chem. Commun., 2001, 163.
[66] Sánchez L, Rispens M T, Hummelen J C. Angew. Chem. Int. Ed., 2002, 41: 838.
[67] Xu J F, Chen Y Z, Wu D Y, Wu L Z, Tung C H, Yang Q Z. Angew. Chem. Int. Ed., 2013, 52: 9738.
[68] Yan X, Li S, Pollock J B, Cook T R, Chen J, Zhang Y, Ji X, Yu Y, Huang F, Stang P J. Proc. Natl. Acad. Sci. U. S. A., 2013, 110: 15585.
[69] Yan X, Jiang B, Cook T R, Zhang Y, Li J, Yu Y, Huang F, Yang H B, Stang P J. J. Am. Chem. Soc., 2013, 135: 16813.
[70] Corbin P S, Zimmerman S C. J. Am. Chem. Soc., 1998, 120: 9710.
[71] Corbin P S, Lawless L J, Li Z T, Ma Y G, Witmer M J, Zimmerman S C. Proc. Natl. Acad. Sci. U. S. A., 2002, 99: 5099.
[72] Baruah P K, Gonnade R, Phalgune U D, Sanjayan G J. J. Org. Chem., 2005, 70: 6461.
[73] Sun H, Steeb J, Kaifer A E. J. Am. Chem. Soc., 2006, 128: 2820.
[74] Cui L, Gadde S, Shukla A D, Sun H, Mague J T, Kaifer A E. Chem. Commun., 2008, 1446.
[75] Lafitte V G H, Aliev A E, Horton P N, Hursthouse M B, Bala K, Golding P, Hailes H C. J. Am. Chem. Soc., 2006, 128: 6544.
[76] Corbin P S, Zimmerman S C. J. Am. Chem. Soc., 2000, 122: 3779.
[77] Corbin P S, Zimmerman S C, Thiessen P A, Hawryluk N A, Murray T J. J. Am. Chem. Soc., 2001, 123: 10475.
[78] Chien C H, Leung M M, Su J K, Li G H, Liu Y H, Wang Y. J. Org. Chem., 2004, 69: 1866.
[79] Hisamatsu Y, Shirai N, Ikeda S I, Odashima K. Org. Lett., 2009, 11: 4342.
[80] Prabhakaran P, Puranik V G, Sanjayan G J. J. Org. Chem., 2005, 70: 10067.
[81] Mudraboyina B P, Wisner J A. Chem. Eur. J., 2012, 18: 14157.
[82] Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W. J. Org. Chem., 2006, 71: 375.
[83] Anderson C A, Taylor P G, Zeller M A, Zimmerman S C. J. Org. Chem., 2010, 75: 4848
[84] Park T, Zimmerman S C, Nakashima S. J. Am. Chem. Soc., 2005, 127: 6520.
[85] Park T, Todd E M, Nakashima S, Zimmerman S C. J. Am. Chem. Soc., 2005, 127: 18133.
[86] Ong H C, Zimmerman S C. Org. Lett., 2006, 8: 1589.
[87] Kuykendall D W, Anderson C A, Zimmerman S C. Org. Lett., 2009, 11: 61.
[88] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 11582.
[89] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 13986.
[90] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 14236.
[91] Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R, Zimmerman S C. J. Am. Chem. Soc., 2013, 135: 7288.
[92] Zhang Y, Anderson C A, Zimmerman S C. Org. Lett., 2013, 15: 3506.
[93] Li Y, Park T, Quansah J K, Zimmerman S C. J. Am. Chem. Soc., 2011, 133: 17118.
[94] Lüning U, Kühl C. Tetrahedron Lett., 1998, 39: 5735.
[95] Brammer S, Lüning U, Kühl C. Eur. J. Org. Chem., 2002, 23: 4054.
[96] Lüning U, Kühl C, Uphoff A. Eur. J. Org. Chem., 2002, 23: 4063.
[97] Taubitz J, Lüning U, Grotemeyer J. Chem. Commun., 2004, 2400.
[98] Quinn J R, Zimmerman S C. Org. Lett., 2004, 6: 1649.
[99] Hisamatsu Y, Shirai N, Ikeda S I. Odashima K. Org. Lett., 2010, 12: 1776.
[100] Pellizzaro M L, Barrett S A, Fisher J, Wilson A J. Org. Biomol. Chem., 2012, 10: 4899.
[101] Zhao X, Wang X Z, Jiang X K, Chen Y Q, Li Z T, Chen G J. J. Am. Chem. Soc., 2003, 125: 15128.
[102] Zhou Y X, Zhao X, Li Z T, Chen G J, Liu R Z. Acta Chim. Sin., 2003, 61: 963.
[103] Feng D J, Wang P, Li X Q, Li Z T. Chin. J. Chem., 2006, 24: 1200.
[104] Yang Y, Yang Z Y, Yi Y P, Xiang J F, Chen C F, Wan L J, Shuai Z G. J. Org. Chem., 2007, 72: 4936.
[105] Taubitz J, Lüning U. Aust. J. Chem., 2009, 62: 1550.
[106] Blight B A, Hunter C A, Leigh D A, McNab H, Thomson P I T. Nat. Chem., 2011, 3: 244.
[107] Wilson A. Nat. Chem., 2011, 3: 193.
[108] Leigh D A, Robertson C C, Slawin A M Z, Thomson P I T. J. Am. Chem. Soc., 2013, 135: 9939.
[109] Gong B, Yan Y F, Zeng H Q, Skrzypczak-Jankunn E, Kim Y W, Zhu J, Ickes H. J. Am. Chem. Soc., 1999, 121: 5607.
[110] Yang X W, Martinovic S, Smith R D, Gong B. J. Am. Chem. Soc., 2003, 125: 9932.
[111] Yang X, Gong B. Angew. Chem. Int. Ed., 2005, 44: 1352.
[112] Roland J T, Guan Z. J. Am. Chem. Soc., 2004, 126: 14328.
[113] Zhang P, Chu H Z, Li X H, Feng W, Deng P C, Yuan L, Gong B. Org. Lett., 2011, 13: 54.
[114] Davis A P, Draper S M, Dunne G, Ashton P. Chem. Comm., 1999, 2265.
[115] Schmuck C, Wienand W. J. Am. Chem. Soc., 2003, 125: 452.P, Hailes H C. J. Am. Chem. Soc., 2006, 128: 6544-6545.
[76] Corbin P S, Zimmerman S C. J. Am. Chem. Soc., 2000, 122: 3779-3780
[77] Corbin P S, Zimmerman S C, Thiessen P A, Hawryluk N A, Murray T J. J. Am. Chem. Soc., 2001, 123: 10475-10488
[78] Chien C-H, Leung M-k, Su J-K, Li G-H, Liu Y-H, Wang Y. J. Org. Chem., 2004, 69: 1866-1871
[79] Hisamatsu Y, Shirai N, Ikeda S I, Odashima K. Org. Lett., 2009, 11: 4342-4345
[80] Prabhakaran P, Puranik V G, Sanjayan G J. J. Org. Chem., 2005, 70: 10067-10072
[81] Mudraboyina B P, Wisner J A. Chem. Eur. J., 2012, 18: 14157-14164
[82] Ligthart G B W L, Ohkawa H, Sijbesma R P, Meijer E W. J. Org. Chem., 2006, 71: 375-378
[83] Anderson C A, Taylor P G, Zeller M A, Zimmerman S C. J. Org. Chem., 2010, 75: 4848-4851
[84] Park T, Zimmerman S C, Nakashima S. J. Am. Chem. Soc., 2005, 127: 6520-6521
[85] Park T, Todd E M, Nakashima S, Zimmerman S C. J. Am. Chem. Soc., 2005, 127: 18133-18142
[86] Ong H C, Zimmerman S C. Org. Lett., 2006, 8: 1589-1592
[87] Kuykendall D W, Anderson C A, Zimmerman S C. Org. Lett., 2009, 11: 61-64
[88] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 11582-11590
[89] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 13986-13987
[90] Park T, Zimmerman S C. J. Am. Chem. Soc., 2006, 128: 14236-14237
[91] Anderson C A, Jones A R, Briggs E M, Novitsky E J, Kuykendall D W, Sottos N R., Zimmerman S C. J. Am. Chem. Soc., 2013, 135: 7288-7295
[92] Zhang Y, Anderson C A, Zimmerman S C. Org. Lett., 2013, 15: 3506-3509
[93] Li Y, Park T, Quansah J K, Zimmerman S C. J. Am. Chem. Soc., 2011, 133: 17118-17121
[94] Lüning U, Kühl C. Tetrahedron Lett., 1998, 39: 5735-5738
[95] Brammer S, Lüning U, Kühl C. Eur. J. Org. Chem., 2002, 23: 4054-4062
[96] Lüning U, Kühl C, Uphoff A. Eur. J. Org. Chem., 2002, 23: 4063-4070
[97] Taubitz J, Lüning U, Grotemeyer J. Chem. Commun., 2004,21: 2400–2401
[98] Quinn J R, Zimmerman S C. Org. Lett., 2004, 6: 1649-1652
[99] Hisamatsu Y, Shirai N, Ikeda S I. Odashima K. Org. Lett., 2010, 12: 1776-1779
[100] Pellizzaro M L, Barrett S A, Fisher J, Wilson A J. Org. Biomol. Chem., 2012, 10: 4899-4906
[101] Zhao X, Wang X Z, Jiang X-K, Chen Y-Q, Li Z T, Chen G-Ju. J. Am. Chem. Soc., 2003, 125: 15128-15139
[102] Zhou Y X, Zhao X, Li Z T, Chen G-J, Liu R-Z. Acta Chim. Sin., 2003, 61: 963-969
[103] Feng D-J, Wang P, Li X-Q, Li Z T. Chin. J. Chem., 2006, 24: 1200-1208
[104] Yang Y, Yang Z-Y, Yi Y-P, Xiang J-F, Chen C-F, Wan L-J, Shuai Z-G. J. Org. Chem., 2007, 72: 4936-4946
[105] Taubitz J, Lüning U. Aust. J. Chem., 2009, 62: 1550-1555
[106] Blight B A, Hunter C A, Leigh D A, McNab H, Thomson P I T. Nature Chem., 2011, 3: 244-248
[107] Wilson A. Nature Chem., 2011, 3: 193-194
[108] Leigh D A, Robertson C C, Slawin A M Z, Thomson P I T. J. Am. Chem. Soc., 2013, 135: 9939-9943
[109] Gong B, Yan Y F, Zeng H Q, Skrzypczak-Jankunn E, Kim, Y W, Zhu J, Ickes H. J. Am. Chem. Soc., 1999, 121: 5607-5608
[110] Yang X W, Martinovic S, Smith R D, Gong B. J. Am. Chem. Soc., 2003, 125: 9932-9933
[111] Yang X, Gong B. Angew. Chem., Int. Ed., 2005, 44: 1352-1356
[112] Roland J T, Guan Z. J. Am. Chem. Soc., 2004, 126: 14328-14329
[113] Zhang P, Chu H-Z, Li X-H, Feng W, Deng P-C,Yuan L, Gong B. Org. Lett., 2011, 13: 54-57
[114] Davis A P, Draper S M, Dunne G, Ashton P. Chem. Comm., 1999, 22: 2265-2266
[115] Schmuck C, Wienand W. J. Am. Chem. Soc., 2003, 125: 452-459

 

[1] 刘亚伟, 张晓春, 董坤, 张锁江. 离子液体的凝聚态化学研究[J]. 化学进展, 2022, 34(7): 1509-1523.
[2] 俞杰, 龚流柱. 手性氨基酸酰胺催化剂的发现及研究进展[J]. 化学进展, 2020, 32(11): 1729-1744.
[3] 裴强, 丁爱祥. 四重氢键自组装体系的设计与应用[J]. 化学进展, 2019, 31(2/3): 258-274.
[4] 李亚雯, 敖宛彤, 金慧琳, 曹利平. 四苯乙烯衍生物与大环主体在主客体相互作用下的聚集诱导发光[J]. 化学进展, 2019, 31(1): 121-134.
[5] 姚闯, 张希, 黄勇力, 李蕾, 马增胜, 孙长庆. 水的结构和反常物性[J]. 化学进展, 2018, 30(8): 1242-1256.
[6] 杜凡凡, 郑映, 单国荣, 包永忠, 介素云*, 潘鹏举*. 基于氢键作用的内酯开环聚合非金属有机催化剂[J]. 化学进展, 2018, 30(6): 710-718.
[7] 王梅祥*. 新型大环超分子化学:从杂杯芳烃到冠芳烃——纪念黄志镗先生诞辰90周年[J]. 化学进展, 2018, 30(5): 463-475.
[8] 潘梅, 韦张文, 徐耀维, 苏成勇. 配位超分子自组装[J]. 化学进展, 2017, 29(1): 47-74.
[9] 董运红, 曹利平. 葫芦脲大环官能团功能化[J]. 化学进展, 2016, 28(7): 1039-1053.
[10] 梁爱辉, 黄贵, 王志平, 陈水亮, 侯豪情. 含铱配合物聚合物磷光材料及其电致发光性能[J]. 化学进展, 2016, 28(4): 471-481.
[11] 黄文忠, 占田广, 林沨, 赵新. 基于主-客体作用的超分子聚合物的构筑和调控进展[J]. 化学进展, 2016, 28(2/3): 165-183.
[12] 伍宏伟, 陈亚运, 饶才辉, 刘传祥*. 含CH基的阴离子受体[J]. 化学进展, 2016, 28(10): 1501-1514.
[13] 夏梦婵, 杨英威. 基于柱芳烃的有机功能材料[J]. 化学进展, 2015, 27(6): 655-665.
[14] 王军, 张阿方. 多肽基超分子螺旋聚合物[J]. 化学进展, 2015, 27(10): 1413-1424.
[15] 钱小红, 金灿, 张晓宁, 姜艳, 林晨, 王乐勇. 方酰胺衍生物及其在离子识别中的应用[J]. 化学进展, 2014, 26(10): 1701-1711.