English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 846-855 DOI: 10.7536/PC131035 前一篇   后一篇

• 综述与评论 •

金表面巯基化DNA单层性能的影响因素研究

李志果*, 张玲玲   

  1. 湛江师范学院化学科学与技术学院 物理化学研究所 湛江 524048
  • 收稿日期:2013-12-01 修回日期:2013-12-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 李志果,e-mail:zgli_zjnu@163.com E-mail:zgli_zjnu@163.com
  • 基金资助:

    国家自然科学基金项目(No. 21205105);广东省自然科学基金项目(No. S2012040007348)和湛江师范学院博士专项基金项目(No. ZL1103)资助

Influence Factors on the Performance of DNA Self-Assembled Monolayers on Gold

Li Zhiguo*, Zhang Lingling   

  1. School of Chemistry Science and Technology, Institute of Physical Chemistry, Zhanjiang Normal University, Zhanjiang 524048, China
  • Received:2013-12-01 Revised:2013-12-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China (No. 21205105), Guangdong Natural Science Foundation (No. S2012040007348) and Doctoral Special Foundation of Zhanjiang Normal University (No. ZL1103)

巯基化DNA在金表面上吸附构建的自组装单层(self-assembled monolayers,SAMs)为DNA研究的理想异相体系,在DNA内电子传递的机制探讨、高灵敏DNA传感器设计以及DNA碱基错配点识别等方面有着广泛的应用。对于不同的研究对象应构建性能适合的DNA单层,以满足研究需要。为了可控构建DNA单层,应理解不同因素对金表面上DNA单层性能的影响。本文从金表面状况、DNA特性以及周围环境三个方面对金表面上巯基化DNA单层性能的影响因素研究进行了系统综述。

Thiol-modified DNA self-assembled monolayers (SAMs) on gold is the ideal heterogeneous system for studying DNA charge transfer through DNA duplex, designing DNA sensor with high sensitivity and identifying single base mismatch etc. The performance of DNA SAMs on gold is related to three aspects: gold surface conditions, DNA characteristics and surroundings. Gold surface conditions mainly include substrate configuration by different surface pretreatment, gold shapes, substrate potential and substrate temperature; DNA characteristics include the difference of double-stranded and single-stranded DNA, DNA base types, types for thiols modification and factors related to DNA electron transfer; Surroundings mainly include ionic strength or types of cations, ambient medium, temperature in solution and types of mixed thiols. These factors influence surface density and conformation of DNA SAMs on gold, which determine its charge transfer or hybridization performance. In order to controllably construct DNA SAMs with the optimal performance for satisfying different researches about DNA, it is very necessary to understand the effect of different factors on the performance of DNA SAMs on gold. In this article we review the research progress of influence factors on the performance of DNA SAMs on gold from three aspects including gold surface conditions, DNA characteristics and surroundings.

Contents
1 Introduction
2 Gold surface conditions
2.1 Surface pretreatment
2.2 Gold substrate shapes
2.3 Gold substrate potential
2.4 Gold substrate temperature
3 DNA characteristics
3.1 Double-stranded and single-stranded DNA
3.2 DNA base types
3.3 Types for thiols modification
3.4 Factors related to DNA electron transfer
4 Surroundings
4.1 Ionic strength and types of cations
4.2 Ambient medium
4.3 Temperature in solution
4.4 Types of mixed thiols
5 outlook

中图分类号: 

()

[1] 雷丽红(Lei L H), 傅迎春(Fu Y C), 徐霞红 (Xu X H), 谢青季(Xie Q J), 姚守拙(Yao S Z). 化学进展(Progress in Chemistry), 2009, 21(4): 724.
[2] 李志果(Li Z G), 纪鸣(Ji M), 程炯佳(Cheng J J), 王新莹(Wang X Y), 陆晓杰(Lu X J), 安娜(An N), 毕树平(Bi S P). 分析科学学报(Journal of Analytical Science), 2012, 28(4): 567.
[3] 张炯(Zhang J), 万莹(Wan Y), 王丽华(Wang L H), 宋世平(Song S P), 樊春海(Fan C H). 化学进展(Progress in Chemistry), 2007, 19(10): 1576.
[4] Sontz P A, Muren N B, Barton J K. Acc. Chem. Res., 2012, 45: 1792.
[5] Teles F R R, Fonseca L P. Talanta, 2008, 77: 606.
[6] Muren N B, Olmona E D, Barton J K. Phys. Chem. Chem. Phys., 2012, 14: 13754.
[7] Olmon E D, Sontz P A, Blanco-Rodriguez A M, Towrie M, Clark I P, Vicek A Jr., Barton J K. J. Am. Chem. Soc., 2011, 133: 13718.
[8] Wohlgamuth C H, McWilliams M A, Slinker J D. Anal. Chem., 2013, 85: 1462.
[9] Mie Y, Kowata K, Kojima N, Komatsu Y. Langmuir, 2012, 28: 17211.
[10] Anne A, Demaille C. J. Am. Chem. Soc., 2008, 130: 9812.
[11] Wang K, Goyer C, Anne A, Demaille C. J. Phys. Chem. B, 2007, 111: 6051.
[12] Gong P, Levicky R. Proc. Natl. Acad. Sci. USA, 2008, 105: 5301.
[13] Arinaga K, Rant U, Knezevic J, Pringsheim E, Tornow M, Fujita S, Abstreiter G, Yokoyama N. Biosens. Bioelectron., 2007, 23: 326.
[14] 李志果(Li Z G), 戴建远(Dai J Y), 史艳青(Shi Y Q), 毕树平(Bi S P). 分析科学学报(Journal of Analytical Science), 2012, 28(2): 273.
[15] Feng G Y, Niu T X, You X Y, Wan Z W, Kong Q C, Bi S P. Analyst, 2011, 136: 5058.
[16] Tkac J, Davis J J. J. Electroanal. Chem., 2008, 621: 117.
[17] Carvalhal R F, Freire R S, Kubota L T. Electroanalysis, 2005, 17: 1251.
[18] Hoogvliet J C, Dijksma M, Kamp B, van Bennekom W P. Anal. Chem., 2000, 72: 2016.
[19] Thomas J P, Zhao L Y, Ding K J, Heinig N F, Leung K T. ACS Appl. Mater. Interfaces, 2012, 4: 5945.
[20] Li F, Han X P, Liu S F. Biosens. Bioelectron., 2011, 26: 2619.
[21] Liu S F, Liu J, Han X P, Cui Y N, Wang W. Biosens. Bioelectron., 2010, 25: 1640.
[22] Li Y, Qi H L, Yang J, Zhang C X. Microchim. Acta, 2009, 164: 69.
[23] Li A X, Yang F, Ma Y, Yang X R. Biosens. Bioelectron., 2007, 22: 1716.
[24] 王辉(Wang H), 李延(Li Y), 漆红兰(Qi H L), 张成孝(Zhang C X). 陕西师范大学学报(Journal of Shaanxi Normal University), 2006, 34(4): 69.
[25] 杨婕(Yang J), 杨涛(Yang T), 马瑶(Ma Y), 焦奎(Jiao K). 化学研究与应用(Chemical Research and Application), 2007, 19(3): 233.
[26] 董晓娅(Dong X Y), 赵伟伟(Zhao W W), 孙国宝(Sun G B), 徐静娟(Xu J J), 陈洪渊(Chen H Y). 化学学报(Acta Chimica Sinica), 2012, 70(13): 1457.
[27] Hansen A G, Salvatore P, Karlsen K K, Nichols R J, Wengel J, Ulstrup J. Phys. Chem. Chem. Phys., 2013, 15: 776.
[28] Salvatore P, Zeng D D, Karlsen K K, Chi Q J, Wengel J, Ulstrup J. ChemPhysChem, 2013, 14: 2101.
[29] Ohshiro T, Maeda M. Chem. Commun., 2010, 46: 2581.
[30] Ehlich R, Horber J K H. Ultramicroscopy, 2009, 109: 1074.
[31] 梁金玲(Liang J L), 周剑章(Zhou J Z), 陈巧琳(Chen Q L), 林玲玲(Lin L L), 林仲华(Lin Z H). 物理化学学报(Acta Physico-Chimica Sinica), 2007, 23(9): 1421.
[32] 王青(Wang Q), 王柯敏(Wang K M), 羊小海(Yang X H), 莫远尧(Mo Y Y), 黄杉生(Huang S S), 李杜(Li D). 湖南大学学报(Journal of Hunan University), 2003, 30(1): 1.
[33] 董丽琴(Dong L Q), 周剑章(Zhou J Z), 吴玲玲(Wu L L), 董平(Dong P), 林仲华(Lin Z H). 高等学校化学学报(Chemical Journal of Chinese Universities), 2002, 23(12): 2303.
[34] Yang X H, Wang Q, Wang K M, Tan W H, Yao J, Li H M. Langmuir, 2006, 22: 5654.
[35] Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M. Nano Lett., 2004, 4: 2441.
[36] Kaiser W, Rant U. J. Am. Chem. Soc., 2010, 132: 7935.
[37] Rant U, Arinaga K, Tornow M, Kim Y W, Netz R R, Fujita S, Yokoyama N, Abstreiter G. Biophys. J., 2006, 90: 3666.
[38] Rant U, Arinaga K, Fujita S, Yokoyama N, Abstreiter G, Tornow M. Org. Biomol. Chem., 2006, 4: 3448.
[39] Josephs E A, Ye T. Nano Lett., 2012, 12: 5255.
[40] Ceres D M, Barton J K. J. Am. Chem. Soc., 2003, 125: 14964.
[41] Josephs E A, Ye T. J. Am. Chem. Soc., 2012, 134: 10021.
[42] Kelley S O, Barton J K, Jackson N M, McPherson L D, Potter A B, Spain E M, Allen M J, Hill M G. Langmuir, 1998, 14: 6781.
[43] Heaton R J, Peterson A W, Georgiadis R M. Proc. Natl. Acad. Sci. USA, 2001, 98: 3701.
[44] Rant U, Pringsheim E, Kaiser W, Arinaga K, Knezevic J, Tornow M, Fujita S, Yokoyama N, Abstreiter G. Nano Lett., 2009, 9: 1290.
[45] Rant U, Arinaga K, Scherer S, Pringsheim E, Fujita S, Yokoyama N, Tornow M, Abstreiter G. Proc. Natl. Acad. Sci. USA, 2007, 104: 17364.
[46] Arinaga K, Rant U, Tornow M, Fujita S, Abstreiter G, Yokoyama N. Langmuir, 2006, 22: 5560.
[47] Wong I Y, Melosh N A. Nano Lett., 2009, 9: 3521.
[48] Cao S H, Xie T T, Cai W P, Liu Q, Li Y Q. J. Am. Chem. Soc., 2011, 133: 1787.
[49] Johnson R P, Gale N, Richardson J A, Brown T, Bartlett P N. Chem. Sci., 2013, 4: 1625.
[50] Johnson R P, Gao R, Brown T, Bartlett P N. Bioelectrochemistry, 2012, 85: 7.
[51] Flechsig G U, Peter J, Hartwich G, Wang J, Grundler P. Langmuir, 2005, 21: 7848.
[52] Peter J, Reske T, Flechsig G U. Electroanalysis, 2007, 19: 1356.
[53] Walter A, Surkus A E, Flechsig G U. Anal. Bioanal. Chem., 2013, 405: 3907.
[54] Li Z G, Niu T X, Zhang Z J, Chen R, Feng G Y, Bi S P. Analyst, 2011, 136: 2090.
[55] Li Z G, Niu T X, Zhang Z J, Chen R, Feng G Y, Bi S P. Biosens. Bioelectron., 2011, 26: 4564.
[56] Tinland B, Pluen A, Sturm J, Weill G. Macromolecules, 1997, 30: 5763.
[57] Steel A B, Levicky R L, Herne T M, Tarlov M J. Biophys. J., 2000, 79: 975.
[58] Petrovykh D Y, Perez-Dieste V, Opdahl A, Kimura-Suda H, Sullivan J M, Tarlov M J, Himpsel F J, Whitman L J. J. Am. Chem. Soc., 2006, 128: 2.
[59] Barhoumi A, Zhang D M, Halas N J. J. Am. Chem. Soc., 2008, 130: 14040.
[60] Yao L Q, Sullivan J, Hower J, He Y, Jiang S Y. J. Chem. Phys., 2007, 127: 195101.
[61] Petrovykh D Y, Kimura-Suda H, Whitman L J, Tarlov M J. J. Am. Chem. Soc., 2003, 17: 5219.
[62] Mourougou-Candoni N, Naud C, Thibaudau F. Langmuir, 2003, 19: 682.
[63] Cardenas M, Barauskas J, Schillen K, Brennan J L, Brust M, Nylander T. Langmuir, 2006, 22: 3294.
[64] Wolf L K, Gao Y, Georgiadis R M. Langmuir, 2004, 20: 3357.
[65] Kimura-Suda H, Petrovykh D Y, Tarlov M J, Whitman L J. J. Am. Chem. Soc., 2003, 125: 9014.
[66] Sam M, Boon E M, Barton J K, Hill M G, Spain E M. Langmuir, 2001, 17: 5727.
[67] Farjami E, Campos R, Ferapontova E E. Langmuir, 2012, 28: 16218.
[68] Sakata T, Maruyama S, Ueda A, Otsuka H, Miyahara Y. Langmuir, 2007, 23: 2269.
[69] Day B S, Fiegland L R, Vint E S, Shen W Q, Morris J R, Norton M L. Langmuir, 2011, 27: 12434.
[70] O'Brien J C, Stickney J T, Porter M D. J. Am. Chem. Soc., 2000, 122: 5004.
[71] Ceres D M, Udit A K, Hill H D, Hill M G, Barton J K. J. Phys. Chem. B, 2007, 111: 663.
[72] Pheeney C G, Barton J K. J. Am. Chem. Soc., 2013, 135: 14944.
[73] Genereux J G, Barton J K. Chem. Rev., 2010, 110: 1642.
[74] Gorodetsky A A, Green O, Yavin E, Barton J K. Bioconjuate Chem., 2007, 18: 1434.
[75] Liu B, Bard A J, Li C Z, Kraatz H B. J. Phys. Chem. B, 2005, 109: 5193.
[76] Abi A, Ferapontova E E. J. Am. Chem. Soc., 2012, 134: 14499.
[77] Mie Y, Kojima N, Kowata K, Komatsu Y. Chem. Lett., 2012, 41: 62.
[78] Yu Y M, Heidel B, Parapugna T L, Wenderhold-Reeb S, Song B, Schçnherr H, Grininger M, Noll G. Angew. Chem. Int. Ed., 2013, 52: 4950.
[79] Farjami E, Clima L, Gothelf K V, Ferapontova E E. Analyst, 2010, 135: 1443.
[80] Wohlgamuth C H, McWilliams M A, Slinker J D. Anal. Chem., 2013, 85: 8634.
[81] Guo Q Q, Yue Q L, Zhao J J, Wang L, Wang H S, Wei X L, Liu J F, Jia J B. Chem. Commun., 2011, 47: 11906.
[82] Boon E M, Jackson N M, Wightman M D, Kelley S O, Hill M G, Barton J K. J. Phys. Chem. B, 2003, 107: 11805.
[83] Inouye M, Ikeda R, Takase M, Tsuri T, Chiba J. Proc. Natl. Acad. Sci. USA, 2005, 102: 11606.
[84] Slinker J D, Muren N B, Renfrew S E, Barton J K. Nat. Chem., 2011, 3: 228.
[85] Drummond T G, Hill M G, Barton J K. J. Am. Chem. Soc., 2004, 126: 15010.
[86] Liu T, Barton J K. J. Am. Chem. Soc., 2005, 127: 10160.
[87] Göhler B, Hamelbeck V, Markus T Z, Kettner M, Hanne G F, Vager Z, Naaman R, Zacharias H. Science, 2011, 331: 894.
[88] 陈霞(Chen X), 杨文胜(Yang W S), 靳健(Jin J), 徐力(Xu L), 杨百全(Yang B Q), 江林(Jiang L), 李铁津(Li T J), 陈曦(Chen X). 高等学校化学学报(Chemical Journal of Chinese Universities), 2001, 22(7): 1228.
[89] 李安之(Li A Z), 丁玫(Ding M), 于海鹰(Yu H Y), 章江英(Zhang J Y). 物理化学学报(Acta Physico-Chimica Sinica), 1992, 8(2): 207.
[90] 沈鹤柏(Shen H B), 康玉专(Kang Y Z), 杨海峰(Yang H F), 郁林(Yu L), 章宗穰(Zhang Z R). 电化学(Electrochemistry), 1998, 11(4): 400.
[91] 王新莹(Wang X Y), 纪鸣(Ji M), 李志果(Li Z G), 陆晓杰(Lu X J), 程炯佳(Cheng J J), 毕树平(Bi S P). 分析科学学报(Journal of Analytical Science), 2005, 21(5): 557.
[92] Castelino K, Kannan B, Majumdar A. Langmuir, 2005, 21: 1956.
[93] 徐 颖(Xu Y), 杨 琳(Yang L), 叶晓燕(Ye X Y), 何品刚(He P G), 方禹之(Fang Y Z). 华东师范大学学报(Journal of East China Normal University), 2006, 4: 39.
[94] Stachowiak J C, Yue M, Castelino K, Chakraborty A, Majumdar A. Langmuir, 2006, 22: 263.
[95] Li Z G, Niu T X, Zhang Z J, Feng G Y, Bi S P. Analyst, 2012, 137: 1680.
[96] Asanuma H, Noguchi H, Uosaki K, Yu H Z. J. Am. Chem. Soc., 2008, 130: 8016.
[97] Dinsmore M J, Lee J S. J. Inorg. Biochem., 2008, 102: 1599.
[98] Long Y T, Li C Z, Kraatz H B, Lee J S. Biophys. J., 2003, 84: 3218.
[99] Dinsmore M J, Lee J S. J. Electroanal. Chem., 2008, 617: 71.
[100] Li C Z, Long Y T, Kraatz H B, Lee J S. J. Phys. Chem. B, 2003, 107: 2291.
[101] Mizoguchi K, Tanaka S, Ogawa T, Shiobara N, Sakamoto H. Phys. Rev. B, 2005, 72: 033106.
[102] Legay G, Finot E, Meunier-Prest R, Cherkaoui-Malki M, Latruffe N, Dereux A. Biosens. Bioelectron., 2005, 21: 627.
[103] Howell C, Schmidt R, Kurz V, Koelsch P. Biointerphases, 2008, 3: 47.
[104] Yang W W, Lai R Y. Analyst, 2011, 136: 134.
[105] Pris A D, Ostrowski S G, Garaas S D. Langmuir, 2010, 26: 5655.
[106] Ge D B, Wang X, Williams K, Levicky R. Langmuir, 2012, 28: 8446.
[107] Kjallman T H M, Peng H, Soeller C, Travas-Sejdic J. Anal. Chem., 2008, 80: 9460.
[108] Goda T, Miyahara Y. Biosens. Bioelectron., 2011, 26: 3949.
[109] Mix M, Reske T, Duwensee H, Flechsig G U. Electroanalysis, 2009, 21: 826.
[110] 白燕(Bai Y), 戴小锋(Dai X F), 刘仲明(Liu Z M), 刘芳(Liu F), 马丽(Ma L). 传感器技术(Journal of Transducer Technology), 2005, 24(6): 23.
[111] Pheeney C G, Guerra L F, Barton J K. Proc. Natl. Acad. Sci. USA, 2012, 109: 11528.
[112] Herne T M, Tarlov M J. J. Am. Chem. Soc., 1997, 119: 8916.
[113] Dharuman V, Chang B Y, Park S M, Hahn J H. Biosens. Bioelectron., 2010, 25: 2129.
[114] Wu J, Campuzano S, Halford C, Haake D A, Wang J. Anal. Chem., 2010, 82: 8830.
[115] Zhang J, Lao R J, Song S P, Yan Z Y, Fan C H. Anal. Chem., 2008, 80: 9029.
[116] Dharuman V, Vijayaraj K, Radhakrishnan S, Dinakaran T, Narayanan J S, Bhuvana M, Wilson J. Electrochim. Acta, 2011, 56: 8147.
[117] Campuzano S, Kuralay F, Jesús Lobo-Castanón M, Bartosík M, Vyavahare K, Palecek E, Haake D A, Wang J. Biosens. Bioelectron., 2011, 26: 3577.
[118] Gebala M, Schuhmann W. ChemPhysChem, 2010, 11: 2887.
[119] Ferrario A, Scaramuzza M, Pasqualotto E, De Toni A, Paccagnella A. J. Electroanal. Chem., 2013, 689: 57.
[120] Kuralay F, Campuzano S, Wang J. Talanta, 2012, 99: 155.
[121] Henrya O Y F, Gutierrrez Pereza J, Sancheza J L A, O'Sullivan C K. Biosens. Bioelectron., 2010, 25: 978.
[122] Vikholm-Lundin I, Piskonen R. Sens. Actuators B, 2008, 134: 189.
[123] Satjapipat M, Sanedrin R, Zhou F M. Langmuir, 2001, 17: 7637.
[124] Abel G R, Josephs E A, Luong N, Ye T. J. Am. Chem. Soc., 2013, 135: 6399.
[125] Josephs E A, Ye T. ACS Nano, 2013, 7: 3653.
[126] Lou X H, Zhao T, Liu R, Ma J, Xiao Y. Anal. Chem., 2013, 85: 7574.

[1] 杨孟蕊, 谢雨欣, 朱敦如. 化学稳定金属有机框架的合成策略[J]. 化学进展, 2023, 35(5): 683-698.
[2] 杨越, 续可, 马雪璐. 金属氧化物中氧空位缺陷的催化作用机制[J]. 化学进展, 2023, 35(4): 543-559.
[3] 赵晓竹, 李雯, 赵学瑞, 何乃普, 李超, 张学辉. MOFs在乳液中的可控生长[J]. 化学进展, 2023, 35(1): 157-167.
[4] 国纪良, 彭剑飞, 宋爱楠, 张进生, 杜卓菲, 毛洪钧. 机动车尾气二次有机气溶胶生成研究[J]. 化学进展, 2023, 35(1): 177-188.
[5] 陈浩, 徐旭, 焦超男, 杨浩, 王静, 彭银仙. 多功能核壳结构纳米反应器的构筑及其催化性能[J]. 化学进展, 2022, 34(9): 1911-1934.
[6] 谭依玲, 李诗纯, 杨希, 金波, 孙杰. 金属氧化物半导体气敏材料抗湿性能提升策略[J]. 化学进展, 2022, 34(8): 1784-1795.
[7] 贾斌, 刘晓磊, 刘志明. 贵金属催化剂上氢气选择性催化还原NOx[J]. 化学进展, 2022, 34(8): 1678-1687.
[8] 冯海弟, 赵璐, 白云峰, 冯锋. 纳米金属有机框架在肿瘤靶向治疗中的应用[J]. 化学进展, 2022, 34(8): 1863-1878.
[9] 朱月香, 赵伟悦, 李朝忠, 廖世军. Pt基金属间化合物及其在质子交换膜燃料电池阴极氧还原反应中的应用[J]. 化学进展, 2022, 34(6): 1337-1347.
[10] 张明珏, 凡长坡, 王龙, 吴雪静, 周瑜, 王军. 以双氧水或氧气为氧化剂的苯羟基化制苯酚的催化反应机理[J]. 化学进展, 2022, 34(5): 1026-1041.
[11] 韩亚南, 洪佳辉, 张安睿, 郭若璇, 林可欣, 艾玥洁. MXene二维无机材料在环境修复中的应用[J]. 化学进展, 2022, 34(5): 1229-1244.
[12] 乔瑶雨, 张学辉, 赵晓竹, 李超, 何乃普. 石墨烯/金属-有机框架复合材料制备及其应用[J]. 化学进展, 2022, 34(5): 1181-1190.
[13] 张锦辉, 张晋华, 梁继伟, 顾凯丽, 姚文婧, 李锦祥. 零价铁去除水中(类)金属(含氧)离子技术发展的黄金十年(2011-2021)[J]. 化学进展, 2022, 34(5): 1218-1228.
[14] 于丰收, 湛佳宇, 张鲁华. p区金属基电催化还原二氧化碳制甲酸催化剂研究进展[J]. 化学进展, 2022, 34(4): 983-991.
[15] 刘洋洋, 赵子刚, 孙浩, 孟祥辉, 邵光杰, 王振波. 后处理技术提升燃料电池催化剂稳定性[J]. 化学进展, 2022, 34(4): 973-982.