English
新闻公告
More
化学进展 2014, Vol. 26 Issue (05): 796-809 DOI: 10.7536/PC131032 前一篇   后一篇

• 综述与评论 •

基于纤维素的气凝胶材料

马书荣, 米勤勇, 余坚*, 何嘉松, 张军*   

  1. 北京分子科学国家实验室 中国科学院化学研究所 工程塑料重点实验室 北京 100190
  • 收稿日期:2013-10-01 修回日期:2013-12-01 出版日期:2014-05-15 发布日期:2014-03-13
  • 通讯作者: 余坚,e-mail:yuj@iccas.ac.cn;张军,e-mail:jzhang@iccas.ac.cn E-mail:yuj@iccas.ac.cn;jzhang@iccas.ac.cn
  • 基金资助:

    国家自然科学基金项目(No. 51273206);中科院知识创新项目(No. KJCX2-YW-H30-03)和国家重点基础研究发展计划(973)项目(No. 2010CB934705)资助

Aerogel Materials Based on Cellulose

Ma Shurong, Mi Qinyong, Yu Jian*, He Jiasong, Zhang Jun*   

  1. Beijing National Laboratory for Molecular Sciences (BNLMS), Key Laboratory of Engineering Plastics, Institute of Chemistry, Chinese Academy of Sciences, Beijing 100190, China
  • Received:2013-10-01 Revised:2013-12-01 Online:2014-05-15 Published:2014-03-13
  • Supported by:

    The work was supported by the National Natural Science Foundation of China(No. 51273206),Knowledge Inn ovation Program of the Chinese Academy of Sciences(No. KJCX2-YW-H30-03) and National Basic Research Program of China (973 Program, No. 2010CB934705)

纤维素是自然界中储量最为丰富的一种天然高分子。作为继无机气凝胶和合成聚合物气凝胶之后的第三代气凝胶,纤维素基气凝胶材料兼具绿色可再生的纤维素材料和多孔气凝胶材料两者的优点,成为纤维素材料研究与应用中的一个热点。本文梳理了纤维素基气凝胶材料的发展脉络,综述了纤维素基气凝胶材料的研究进展。重点对纤维素基气凝胶的制备方法进行了总结,包括基于含水溶剂和无水溶剂的纤维素直接溶解法及源自植物纤维素和细菌纤维素的纤维素纳米纤维的水相分散法。介绍了纤维素基气凝胶力学性能的提高和功能性开发的最新研究结果。最后对纤维素基气凝胶材料的发展前景和研究方向进行了展望。

Cellulose, as the most abundant biopolymer in nature, has attracted extensive interest from both academia and industry in recent years due to its specific properties such as biocompatibility, biodegradability, thermal and chemical stability. Nowadays, cellulose aerogel, which possesses extremely low density, large open pores, and a high specific surface area, has become one of topical polymer materials that are based on this sustainable resource. The combination of the advantages and characteristics of the renewable biopolymer and highly porous material has made cellulose aerogel as the new generation succeeding the inorganic and synthetic polymer-based aerogel. In this review, recent research progress in cellulose aerogel materials is summarized based on about 70 relevant papers. The preparation of cellulose aerogel materials is mainly focused on the dissolving solvents of cellulose, including hydrous and anhydrous systems, and aqueous dispersion media of cellulose nanofibers, which are separated from native lignocellulose biomass and bacterial cellulose. The recent development to enhance the mechanical properties of cellulose aerogel by improving the strength of solid network via addition of inorganic components, is described, along with that to introduce functionality (hydrophobicity, superoleophobicity, electrical and magnetic properties, etc.) in cellulose aerogel. Finally, a perspective on the cellulose aerogel materials and the research directions in the future is briefly discussed.

Contents
1 Introduction
2 Preparation of cellulose aerogels
2.1 Dissolution of cellulose by non-derivative solvents
2.2 Dispersion of cellulose nanofibers in water
3 Modification of cellulose aerogels
3.1 Enhancement of mechanical properties
3.2 Modification of hydrophobicity and oleophobicity
3.3 Electrical and magnetic functionalization
3.4 Loading of active compounds on aerogels
4 Perspective

中图分类号: 

()

[1] 邢宗(Xing Z), 陈均志(Chen J Z). 纸和造纸(Paper and Paper Making), 2009, 28(12): 26.
[2] 吕昂(Lv A), 张俐娜(Zhang L N). 高分子学报(Acta Polymerica Sinica), 2007, (10): 937.
[3] 张金明(Zhang J M), 张军(Zhang J). 高分子学报(Acta Polymerica Sinica), 2010, (12): 1376.
[4] 徐雁(Xu Y). 化学进展(Progress in Chemistry), 2011, 23(11): 2183.
[5] 陶丹丹(Tao D D), 白绘宇(Bai H Y), 刘石林(Liu S L), 刘晓亚(Liu X Y). 纤维素科学与技术(Journal of Cellulose Science and Technology), 2011, 19(2): 64.
[6] Gesser H D, Goswami P C. Chem. Rev., 1989, 89(4): 765.
[7] Husing N, Schubert U. Angew. Chem. Int. Ed., 1998, 37(1): 22.
[8] Kistler S S. Nature, 1931, 127(3211): 741.
[9] Kistler S S. J. Phys. Chem., 1932, 36(1): 52.
[10] Pierre A C, Pajonk G M. Chem. Rev., 2002, 102(11): 4243.
[11] Akimov Y K. Instrum. Exp. Tech., 2003, 46(3): 287.
[12] Tan C B, Fung B M, Newman J K, Vu C. Adv. Mater., 2001, 13(9): 644.
[13] Pekala R W. J. Mater. Sci., 1989, 24(9): 3221.
[14] Fischer F, Rigacci A, Pirard R, Berthon-Fabry S, Achard P. Polymer, 2006, 47(22): 7636.
[15] Guilminot E, Fischer F, Chatenet M, Rigacci A, Berthon-Fabry S, Achard P, Chainet E. J. Power Sources, 2007, 166(1): 104.
[16] Hattori M, Shimaya Y, Saito M. Polym. J., 1998, 30(1): 37.
[17] Jin H, Nishiyama Y, Wada M, Kuga S. Colloid Surf. A-Physicochem. Eng. Asp., 2004, 240(1/3): 63.
[18] Hoepfner S, Ratke L, Milow B. Cellulose, 2008, 15(1): 121.
[19] Luong N D, Lee Y, Nam J D. Eur. Polym. J., 2008, 44(10): 3116.
[20] Luong N D, Lee Y, Nam J D. J. Mater. Chem., 2008, 18(36): 4254.
[21] Innerlohinger J, Weber H K, Kraft G. Macromol. Symp., 2006, 244(1): 126.
[22] Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M. Res. Lett. Mater. Sci., 2007, 73724.
[23] Liebner F, Potthast A, Rosenau T, Haimer E, Wendland M. Holzforschung, 2008, 62(2): 129.
[24] Gavillon R, Budtova T. Biomacromolecules, 2008, 9(1): 269.
[25] Liebner F, Haimer E, Potthast A, Loidl D, Tschegg S, Neouze M A, Wendland M, Rosenau T. Holzforschung, 2009, 63(1): 3.
[26] Litschauer M, Neouze M A, Haimer E, Henniges U, Potthast A, Rosenau T, Liebner F. Cellulose, 2011, 18(1): 143.
[27] Sescousse R, Budtova T. Cellulose, 2009, 16(3): 417.
[28] Sescousse R, Smacchia A, Budtova T. Cellulose, 2010, 17(6): 1137.
[29] Cai J, Liu Y T, Zhang L N. J. Polym. Sci. Pt. B-Polym. Phys., 2006, 44(21): 3093.
[30] Cai J, Zhang L. Macromol. Biosci., 2005, 5(6): 539.
[31] Cai J, Kimura S, Wada M, Kuga S, Zhang L. ChemSusChem, 2008, 1(1/2): 149.
[32] Cai J, Liu S L, Feng J, Kimura S, Wada M, Kuga S, Zhang L N. Angew. Chem. Int. Ed., 2012, 51(9): 2076.
[33] Liu S L, Yan Q F, Tao D D, Yu T F, Liu X Y. Carbohydr. Polym., 2012, 89(2): 551.
[34] Qi H S, Mader E, Liu J W. J. Mater. Chem. A, 2013, 1(34): 9714.
[35] Zhang J, Cao Y W, Feng J C, Wu P Y. J. Phys. Chem. C, 2012, 116(14): 8063.
[36] Surapolchai W, Schiraldi D A. Polym. Bull., 2010, 65(9): 951.
[37] Swatloski R P, Spear S K, Holbrey J D, Rogers R D. J. Am. Chem. Soc., 2002, 124(18): 4974.
[38] Wu J, Zhang J, Zhang H, He J S, Ren Q, Guo M. Biomacromolecules, 2004, 5(2): 266.
[39] Zhang H, Wu J, Zhang J, He J S. Macromolecules, 2005, 38(20): 8272.
[40] Xu A R, Wang J J, Wang H Y. Green Chem., 2010, 12(2): 268.
[41] 张金明(Zhang J M), 吕玉霞(Lv Y X), 罗楠(Luo N), 武进(Wu J), 余坚(Yu J), 何嘉松(He J S), 张军(Zhang J). 高分子通报(Polymer Bulletin), 2011(10): 138.
[42] Tsioptsias C, Stefopoulos A, Kokkinomalis I, Papadopoulou L, Panayiotou C. Green Chem., 2008, 10(9): 965.
[43] 吕玉霞(Lv Y X), 李小艳(Li X Y), 米勤勇(Mi Q Y), 王德修(Wang D X), 余坚(Yu J), 张军(Zhang J). 中国科学: 化学(Scientia Sinica Chimica), 2011, 41(8): 1331.
[44] Deng M L, Zhou Q, Du A K, van Kasteren J, Wang Y Z. Mater. Lett., 2009, 63(21): 1851.
[45] Sescousse R, Gavillon R, Budtova T. Carbohydr. Polym., 2011, 83(4): 1766.
[46] Gavillon R, Budtova T. Biomacromolecules, 2007, 8(2): 424.
[47] Li J, Lu Y, Yang D J, Sun Q F, Liu Y X, Zhao H J. Biomacromolecules, 2011, 12(5): 1860.
[48] Aaltonen O, Jauhiainen O. Carbohydr. Polym., 2009, 75(1): 125.
[49] Granstrom M, Paakko M K N, Jin H, Kolehmainen E, Kilpelainen I, Ikkala O. Polym. Chem., 2011, 2(8): 1789.
[50] Duchemin B J C, Staiger M P, Tucker N, Newman R H. J. Appl. Polym. Sci., 2010, 115(1): 216.
[51] Wang Z G, Liu S L, Matsumoto Y, Kuga S. Cellulose, 2012, 19(2): 393.
[52] Maeda H, Nakajima M, Hagwara T, Sawaguchi T, Yano S. Kobunshi Ronbunshu, 2006, 63(2): 135.
[53] Paakko M, Vapaavuori J, Silvennoinen R, Kosonen H, Ankerfors M, Lindstrom T, Berglund L A, Ikkala O. Soft Matter, 2008, 4(12): 2492.
[54] Liebner F, Haimer E, Wendland M, Neouze M A, Schlufter K, Miethe P, Heinze T, Potthast A, Rosenau T. Macromol. Biosci., 2010, 10(4): 349.
[55] Heath L, Thielemans W. Green Chem., 2010, 12(8): 1448.
[56] Silva T C F, Habibi Y, Colodette J L, Elder T, Lucia L A. Cellulose, 2012, 19(6): 1945.
[57] Aulin C, Netrval J, Wagberg L, Lindstrom T. Soft Matter, 2010, 6(14): 3298.
[58] Korhonen J T, Kettunen M, Ras R H A, Ikkala O. ACS Appl. Mater. Interfaces, 2011, 3(6): 1813.
[59] Korhonen J T, Hiekkataipale P, Malm J, Karppinen M, Ikkala O, Ras R H A. ACS Nano, 2011, 5(3): 1967.
[60] Kettunen M, Silvennoinen R J, Houbenov N, Nykanen A, Ruokolainen J, Sainio J, Pore V, Kemell M, Ankerfors M, Lindstrom T, Ritala M, Ras R H A, Ikkala O. Adv. Funct. Mater., 2011, 21(3): 510.
[61] Russler A, Wieland M, Bacher M, Henniges U, Miethe P, Liebner F, Potthast A, Rosenau T. Cellulose, 2012, 19(4): 1337.
[62] Sehaqui H, Salajkova M, Zhou Q, Berglund L A. Soft Matter, 2010, 6(8): 1824.
[63] Cervin N T, Aulin C, Larsson P T, Wagberg L. Cellulose, 2012, 19(2): 401.
[64] Wang M, Anoshkin I V, Nasibulin A G, Korhonen J T, Seitsonen J, Pere J, Kauppinen E I, Ras R H A, Ikkala O. Adv. Mater., 2013, 25(17): 2428.
[65] Gawryla M D, van den Berg O, Weder C, Schiraldi D A. J. Mater. Chem., 2009, 19(15): 2118.
[66] Haimer E, Wendland M, Schlufter K, Frankenfeld K, Miethe P, Potthast A, Rosenau T, Liebner F. Macromol. Symp., 2010, 294(2): 64.
[67] Hoshi T, Maeda H, Mizobuchi K, Tetsukawa A, Sawaguchi T, Yano S. Kobunshi Ronbunshu, 2010, 67(5): 318.
[68] Javadi A, Zheng Q F, Payen F, Altin Y, Cai Z Y, Sabo R, Gong S Q. ACS Appl. Mater. Interfaces, 2013, 5(13): 5969.
[69] Jin H, Kettunen M, Laiho A, Pynnonen H, Paltakari J, Marmur A, Ikkala O, Ras R H A. Langmuir, 2011, 27(5): 1930.
[70] Olsson R T, Samir M, Salazar-Alvarez G, Belova L, Strom V, Berglund L A, Ikkala O, Nogues J, Gedde U W. Nat. Nanotechnol., 2010, 5(8): 584.
[71] Gao K Z, Shao Z Q, Wang X, Zhang Y H, Wang W J, Wang F J. RSC Adv., 2013, 3(35): 15058.
[72] Thiruvengadam V, Vitta S. RSC Adv., 2013, 3(31): 12765.

[1] 张慧迪, 李子杰, 石伟群. 共价有机框架稳定性提高及其在放射性核素分离中的应用[J]. 化学进展, 2023, 35(3): 475-495.
[2] 李豹, 吴立新. 液态凝聚态调控的分散质组装及功能[J]. 化学进展, 2022, 34(7): 1600-1609.
[3] 柳凤琦, 姜勇刚, 彭飞, 冯军宗, 李良军, 冯坚. 超轻纳米纤维气凝胶的制备及其应用[J]. 化学进展, 2022, 34(6): 1384-1401.
[4] 李诗宇, 阴永光, 史建波, 江桂斌. 共价有机框架在水中二价汞吸附去除中的应用[J]. 化学进展, 2022, 34(5): 1017-1025.
[5] 吴巧妹, 杨启悦, 曾宪海, 邓佳慧, 张良清, 邱佳容. 纤维素基生物质催化转化制备二醇[J]. 化学进展, 2022, 34(10): 2173-2189.
[6] 王嘉莉, 朱凌, 王琛, 雷圣宾, 杨延莲. 循环肿瘤细胞及细胞外囊泡的纳米检测技术[J]. 化学进展, 2022, 34(1): 178-197.
[7] 张震, 赵爽, 陈国兵, 李昆锋, 费志方, 杨自春. 碳化硅块状气凝胶的制备及应用[J]. 化学进展, 2021, 33(9): 1511-1524.
[8] 李金召, 李政, 庄旭品, 巩继贤, 李秋瑾, 张健飞. 纤维素纳米晶体的制备及其在复合材料中的应用[J]. 化学进展, 2021, 33(8): 1293-1310.
[9] 向笑笑, 田晓雯, 刘会娥, 陈爽, 朱亚男, 薄玉琴. 石墨烯基气凝胶小球的可控制备[J]. 化学进展, 2021, 33(7): 1092-1099.
[10] 衡婷婷, 张慧, 陈明学, 胡欣, 方亮, 陆春华. 接枝改性PVDF基含氟聚合物[J]. 化学进展, 2021, 33(4): 596-609.
[11] 程丽丽, 章赟, 朱烨坤, 吴瑛. 选择性氧化HMF[J]. 化学进展, 2021, 33(2): 318-330.
[12] 陈曦, 李喆垚, 陈亚运, 陈志华, 胡艳, 刘传祥. C—H氰烷基化:导向基控制的萘酰亚胺C—H氰烷基化[J]. 化学进展, 2021, 33(11): 1947-1952.
[13] 李健, 张恩爽, 刘圆圆, 黄红岩, 苏岳锋, 李文静. 超低密度气凝胶的制备及应用[J]. 化学进展, 2020, 32(6): 713-726.
[14] 黄倩文, 张晓文, 李密, 吴晓燕, 袁立永. 功能性纤维状二氧化硅纳米粒子的调控制备及在吸附分离中的应用[J]. 化学进展, 2020, 32(2/3): 230-238.
[15] 章强, 黄文峻, 王延斌, 李兴建, 张宜恒. 基于铜催化叠氮-炔环加成反应的聚氨酯功能化[J]. 化学进展, 2020, 32(2/3): 147-161.
阅读次数
全文


摘要

基于纤维素的气凝胶材料